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FAVOR
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FAVOR
● Functional annotation of variants online resource 

and annotator for variation across the human 
genome

3



FAVOR annotation data
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FAVOR API

FAVOR Web UI

FAVOR-GPT

FAVOR DB

FAVOR API
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FAVOR-
API

● Below, you can see 
how to send a GET 
request to the variants 
endpoint to get a 
variant by its 
variant_vcf.
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Motivation of 
building FAVOR-GPT

●Harness the power of LLM to 
improve the user experience.

●Improve the user experience of 
new FAVOR.  
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FAVOR 
APIs

● FAVOR APIs allow access to 
functional annotations directly 
via URLs and programming 
interface. 

● Seamlessly incorporation of 
FAVOR content into different 
workflows apps and cross-
references.

● Sample FAVOR API output
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Graphical 
Representation of the 
FAVOR-GPT workflow

● The FAVOR-GPT workflow 
demonstrates how it 
converts natural language 
into structured query syntax 
and then interprets the 
query results into clear and 
fluid natural language.
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Sample FAVOR-
GPT responses

This example shows how FAVOR-GPT effectively 
interprets user input in natural language, performs precise 
searches in the FAVOR backend database, and then 
clearly and gracefully explains the results in natural 
language. 
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FAVOR-GPT 
Query of Variants

• FAVOR-GPT Variant-based 
search

11



FAVOR-
GPT 
example
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Sample text responses to 
three gene-based inputs

Input Output
How many variants are in SHOX The SHOX gene has a total of 238,699 variants. Within these:208,805 are single nucleotide 

variants (SNVs)29,894 are insertions or deletions (indels)More specific variant details, such 
as counts of common, low-frequency, and rare variants, are accessible through the FAVOR 
database. FAVOR Database SHOX. (Variant counts derived from Bravo Freeze 8 dataset.)

What is the range for TP53 gene? The TP53 gene is located on chromosome 17 at the cytogenetic band 17p13.1. Its genomic 
range spans from position 7,668,420 to 7,687,489 on chromosome 17. For additional 
details, you can refer to the FAVOR database.

Give a general description of EGFR gene. The EGFR (Epidermal Growth Factor Receptor) gene, known by its approved symbol and
HGNC ID 3236, is located on chromosome 7 at the chromosomal location of 7p11.2. EGFR
plays a critical role in the regulation of cell growth and differentiation. It is implicated in
various cancers and is the target of several anticancer therapeutics. The gene spans from
genomic position 55,019,016 to 55,211,627 on chromosome 7. The gene has other names,
including ERBB1 and ERBB, and is associated with an OMIM ID of 131550. The Uniprot
accession number for EGFR is P00533. It is considered an essential gene and is part of the
gene family ID 1096 which includes receptor tyrosine kinases. Additionally, EGFR is highly
intolerant to loss-of-function mutations, with a pLI score of 0.99968, indicative of its critical
function.
For a more in-depth look at the EGFR gene, visit the FAVOR database.

How many pathogenic variants does 
BRCA 1 have?

The BRCA1 gene has a total of 92 pathogenic variants. You can find more details on the
FAVOR database.
(Variant counts derived from Bravo Freeze 8 dataset.)

How many pathogenic variants in APOE? The APOE gene has 11 pathogenic variants in total. Here is the FAVOR database link for more
information.

(Variant counts derived from Bravo Freeze 8 dataset.)

How many loss of function variants in 
APOE?

The APOE gene has a total of 12 observed loss of function (LoF) variants with an expected
count of 14.714, and an observed/expected ratio of 0.81553. You can find more detailed
information on APOE here.
(Variant counts derived from Bravo Freeze 8 dataset.)

How many conserved variants in APOE? The APOE gene contains a total of 280 conserved variants. You can view more information on
these variants in the FAVOR database here.
(Variant counts derived from Bravo Freeze 8 dataset.)
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https://favor.genohub.org/hg38/gene/SHOX/gene-level-annotation/info-and-ids
https://favor.genohub.org/hg38/gene/TP53/gene-level-annotation/info-and-ids
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https://favor.genohub.org/hg38/gene/APOE/gene-level-annotation/info-and-ids


Comparison of the 
outputs generated 
by different models 

Task Input Model Output

Gene 
Informatio
n

How many pathogenic variants are there in 
the gene BRCA1?

FAVOR-
GPT

The BRCA1 gene has a total of 92 pathogenic variants. For further 
details, you can visit the FAVOR database here.

RAG-T There are two pathogenic variants.
RAG-S BRCA1 has two pathogenic variants.

How many variants are in DMD? FAVOR-
GPT

There are a total of 577,838 variants in the DMD gene, out of 
which 532,367 are SNVs and 45,471 are indels. You can find more 
details about these variants on the FAVOR DMD gene page.

RAG-T There are more than 1000 variants.
RAG-S More than 1000

Variant 
Informatio
n

What is the pathogenicity of the variant 19-
44908822-C-T?

FAVOR-
GPT

The variant rs7412 (19-44908822-C-T) is associated with 
pathogenic outcomes and is clinically significant for drug 
response, particularly concerning Hypercholesterolemia and 
Familial type 3 hyperlipoproteinemia, among others. Expert 
panels in ClinVar have reviewed its significance and 
computational predictions suggest a deleterious effect on protein 
function. Furthermore, it influences response to medications 
such as Warfarin and Atorvastatin. For a comprehensive look at 
the variant's evidence and classifications, refer to FAVOR 
database.

RAG-T The variant 19-44908822-C-T may have clinical significance 
related to a specific health condition.

RAG-S Pathogenicity for 19-44908822-C-T needs to be evaluated with 
clinical correlation.

Give a short description of rs7412 FAVOR-
GPT

Rs7412 is a single nucleotide variant located on chromosome 19 
at position 44908822. It is characterized by a cytosine to thymine 
change (C>T). This variant is found in the APOE gene and is 
associated with several conditions, including 
hypercholesterolemia, warfarin response, familial type 3 
hyperlipoproteinemia, and atorvastatin response efficacy, among 
others. Bioinformatic predictions indicate that it is probably 
damaging with a PolyPhen score of 1 and a deleterious SIFT score. 
Its clinical significance includes associations with drug response 
and pathogenicity. The total allele number (AN) reported in the 
BRAVO database is 264,690, with an allele count (AC) of 20,678, 
and an allele frequency (AF) of approximately 7.8%.For more 
information, you can access the FAVOR database.

RAG-T rs7412 is a SNP associated with different forms of ApoE and 
cholesterol levels.

RAG-S Variant rs7412 affects the ApoE gene, linked to Alzheimer's risk 
and lipid profiles 14

https://favor.genohub.org/hg38/gene/BRCA1/gene-level-annotation/info-and-ids
https://favor.genohub.org/hg38/gene/DMD/gene-level-annotation/info-and-ids
https://favor.genohub.org/hg38/variant/19-44908822-C-T/summary/basic
https://favor.genohub.org/hg38/variant/19-44908822-C-T/summary/basic
https://favor.genohub.org/hg38/rsid/rs7412/summary/basic


Demo

1. https://favor.genohub.org/

1. https://colab.research.google.com/drive/12WfsNC8FtoPmpA1j4kcuycb3
KD05G5kE?usp=sharing

15

https://favor.genohub.org/
https://colab.research.google.com/drive/12WfsNC8FtoPmpA1j4kcuycb3KD05G5kE?usp=sharing
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Database Query 
Generation with LLMs

Presenter: Hufeng Zhou
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Text-to-SQL 
Chain

•A technique for generating accurate SQL 
queries based on contextual data.

•Utilizes the RAG (Retrieval Augmented 
Generation) powered by GPT-3.5-Turbo, 
LangChain, PostgreSQL, and ChromaDB.

•Aims to narrow the gap between database 
systems and non-technical users by automating 
the conversion of natural language queries into 
SQL commands.

•Enhances data processing efficiency.

•Enables automated data analysis, intelligent 
database services, and streamlined query 
responses.
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Text-to-SQL Architecture

• Automates SQL query generation from natural language.

• Utilizes LLMs to bridge the gap between human communication and complex data retrieval.

• Comprises modules for natural language understanding, semantic parsing, and database 
execution.

• Involves preprocessing user queries, mapping them to SQL, executing them on the database, 
and returning results.
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Architecture

At a high-level, the steps of most SQL chain and agent are:

1. Convert question to SQL query: Model converts user input to a 
SQL query.

2. Execute SQL query: Execute the SQL query

3. Answer the question: Model responds to user input using the 
query results.
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Agent
● Explores a revolutionary approach leveraging Large Language Models (LLMs)

● Bridges the gap between human communication and complex data retrieval

● Delves into the possibilities of AutoGen and LangChain

● Powerful tools that empower LLMs to interact with PostgreSQL databases
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Agents

● LangChain offers a number of tools and functions that allow you to create SQL Agents which can provide a 
more flexible way of interacting with SQL databases. The main advantages of using SQL Agents are:

● It can answer questions based on the databases schema as well as on the databases content (like 
describing a specific table).

● It can recover from errors by running a generated query, catching the traceback and regenerating it correctly.

● It can query the database as many times as needed to answer the user question.

● To initialize the agent we'll use the createOpenAIToolsAgent function. This agent uses the SqlToolkit which 
contains tools to:

● Create and execute queries

● Check query syntax

● Retrieve table descriptions

21

https://api.js.langchain.com/functions/langchain_agents.createOpenAIToolsAgent.html
https://api.js.langchain.com/classes/langchain_agents_toolkits_sql.SqlToolkit.html


Limitations

• Large language models (LLMs) serve as an intuitive 
interface for communication between humans and data.

• However, LLMs face limitations in accessing specific 
private or domain-specific data.

• Proprietary data may be stored in various formats, 
including APIs, SQL databases, PDFs, and slide decks.

• Fine-tuning an LLM involves adjusting parameters 
based on a new dataset, but this process presents 
challenges:

• High training costs

• Difficulty in updating information

• Limited insight into the model’s decision-making 
process.
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Enhancing SQL Generation with 
Data Expert LLM

• Long-standing problem: Requires comprehending the query and database to retrieve accurate data.

• Existing models: Rely on LLMs to generate SQL according to the database schema.

• Issue: Necessary knowledge may not be included in the database schema or learned by LLMs, leading 
to inaccuracies in generated SQL.

• Proposed Solution: Knowledge-to-SQL FrameworkData Expert LLM (DELLM)

• Provides helpful knowledge for all types of text-to-SQL models.

• Detailed design includes table reading and fine-tuning processes.

• Preference Learning via Database Feedback (PLDBF)

• Training strategy to guide DELLM in generating more helpful knowledge for LLMs.

• Results

• Extensive experiments show DELLM enhances state-of-the-art LLMs on text-to-SQL tasks.

• Model structure and parameter weights of DELLM are released for further research.
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Text-to-
SQL
● A sketch map illustrating the significance of incorporating expert knowledge in 

Text-to-SQL task.

● Significance of Text-to-SQL: Generating SQL from user queries is a leading 
application for Large Language Models (LLMs).

● Straightforward Approach: Typically, user queries and database schemas are 
input into LLMs to generate SQL, but this often results in inaccuracies due to 
specialized knowledge requirements.

● Challenge: Accurate SQL generation requires data expert knowledge, which is 
difficult to integrate without human intervention.

● Non-Human Architecture: Developing automated systems to generate 
necessary expert knowledge can enhance Text-to-SQL performance and 
robustness.

Challenges in Generating Expert Knowledge:

1. Query & Database Specialization: Tailoring knowledge to specific queries and 
databases.

2. Table Content Awareness: Understanding table content to provide relevant 
examples.

3. Performance Enhancement: Ensuring generated knowledge improves SQL 
accuracy.

● Proposed Solution: A Knowledge-to-SQL pipeline with a Data Expert Language 
Model (DELLM) featuring a table reading component and fine-tuning mechanism.
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The overview 
of knowledge-to-
SQL framework

● Upper is the overall knowledge-to-SQL framework. The details of 
DELLM are presented at the bottom.

● On the left side, we have the framework of DELLM, and on the 
right side, we introduce Preference Learning via Database 
Feedback (PLDBF), which is employed to enhance the 
performance of DELLM.
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Experimental results for text-to-SQL on 
different benchmarks

Models
EX VES

w/o knowledge w/ DELLM w/o knowledge w/ DELLM

BIRD

T5-3B 10.37 16.68 (+6.31) 13.62 20.84 (+7.22)

GPT-3.5-Turbo 27.64 33.31 (+5.67) 28.64 36.12 (+7.48)

GPT-4 33.25 37.94 (+4.69) 35.92 42.15 (+6.23)

Claude-2 30.05 35.53 (+5.48) 32.97 39.71 (+6.74)

GPT-3.5-Turbo 

+ COT
27.25 32.79 (+5.54) 29.16 35.51 (+6.35)

DAIL-

SQL+GPT-4
40.89 45.81 (+4.92) 45.13 51.59 (+6.46)

MAC-

SQL+GPT-4
43.65 48.92 (+5.27) 48.07 54.78 (+6.71)

Spider
GPT-3.5-Turbo 67.89 69.60 (+1.71) 68.33 70.16 (+1.83)

GPT-4 70.02 71.68 (+1.66) 71.03 72.82 (+1.79)

26



Retrieval-
Augmented 
Generation 
(RAG)

● Retrieval-Augmented Generation (RAG) enhances model understanding and 
performance by supplementing input context with additional information.

● RAG retrieves relevant information from suitable data sources and integrates it into 
the query context.

● The enriched prompt helps the language model generate more accurate and 
contextually relevant outputs, such as text or SQL queries.

● RAG addresses fine-tuning drawbacks by being cost-effective, ensuring real-time 
data relevance, and increasing trustworthiness through observable retrieval 
mechanisms.
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An 
Overview
of RAG

● The model retrieves contextual documents from an 
external dataset as part of its execution. These 
contextual documents are used in conjunction with 
the original input to produce an output.

● RAG acts just like any other seq2seq model.

● However, RAG has an intermediate component that 
retrieves contextual documents from an external 
knowledge base (like a Wikipedia text corpus).

● These documents are then used in conjunction with 
the input sequence and passed into the underlying 
seq2seq generator.

● This information retrieval step allows RAG to make 
use of multiple sources of knowledge: Those that are 
baked into the model parameters.

○ The information contained in the contextual 
passages.

○ This allows RAG to outperform other state-of-
the-art models in tasks like question 
answering.
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How to Use RAG with Large 
Language Models (LLMs)

● Step 1: Identifying the Need for External Data Retrieval
○ Recognize LLM limitations in training data.

○ Identify use cases needing up-to-date or specialized knowledge.

● Step 2: Setting Up Data Retrieval Mechanisms
○ Select relevant external data sources (e.g., online databases, APIs).

○ Build infrastructure for querying these sources.

● Step 3: Prompt Analysis and Data Retrieval
○ Analyze user prompts for context and requirements.

○ Retrieve relevant information from external sources.

● Step 4: Data Integration and Response Generation
○ Synthesize retrieved data with the LLM’s knowledge.

○ Generate accurate and contextually appropriate responses.

● Step 5: Continuous Learning and Updating
○ Implement a feedback loop for continuous improvement.

○ Regularly update external data sources.
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Benefits of Retrieval-
Augmented Generation

Access to Current and Comprehensive Information

Up-to-Date Responses: Provides current and updated information by retrieving data from external sources.

Comprehensive Knowledge Base: Extends LLMs' knowledge base with a wide range of information from various sources.

Enhanced Accuracy and Relevance

Reduction in AI Hallucinations: Grounds responses in real-world, verifiable data, reducing the generation of incorrect information.

Contextually Relevant Responses: Integrates relevant external data, ensuring accurate and applicable responses.

Increased User Trust and Transparency

Trustworthy Responses: Offers sourced and current information, increasing user trust in AI systems.

Transparency: Includes citations or sources for external data, allowing users to verify information.

Cost and Resource Efficiency

Reduced Need for Continuous Retraining: Supplements LLMs' knowledge with real-time data retrieval, reducing the frequency of retraining.

Efficient Data Utilization: Utilizes existing data sources efficiently, minimizing the need for large datasets.

Versatility and Customization

Adaptability to Various Domains: Can be tailored to specific industries or domains, making it versatile for different applications.

Customizable Responses: Pulls data from domain-specific sources for highly relevant responses.

Improved User Experience

Interactive and Dynamic Interactions: Enhances the interactivity of LLMs, making conversations more engaging.

Meeting User Expectations: Provides accurate, relevant, and current information, leading to better user satisfaction.
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Challenges 
associated with 
Retrieval-
Augmented 
Generation 
(RAG)
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Chaining with 
LangChain

● Chains are sequences of commands, such as LLM 
calls or data preprocessing steps, created using 
LangChain Expression Language (LCEL).

● LCEL provides a high-level method for building 
customized chains.

● LangChain supports LCEL-based chains and legacy 
chains from previous chain classes.

● Transitioning to LCEL-based chains is motivated by 
benefits like direct modification of internal 
components, support for various processing modes, 
and automatic monitoring at each step.

● This transition enhances flexibility and efficiency in 
chain creation and execution.
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Context 
Injection with 
RAG

● Establishing a Well-Formatted Knowledge Base

● Typically in JSON-like format

● Serves as the foundation for creating embeddings and storing them in 
vector storage (e.g., ChromaDB)

● Text-to-SQL Workflow with RAG

● ChromaDB

• User-friendly and open-source

• Offers supplementary filtering features for metadata association

● Embedding Function

• Uses OpenAIEmbeddings to establish an embedding function

● Process Steps

● Load the JSON file

● Apply metadata_func to extract JSON fields for document metadata

● Use content_key to specify the field for vector text (e.g., ‘Table_Name’)

● Instantiate a ChromaDB instance with documents and embedding model

● Construct a chain using the ChatOpenAI model and a retriever
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Off-the-Shelf Chains

• LangChain Off-the-Shelf Chains
• Chains Created Using LCEL

• Built with a more abstract method but essentially constructed 
using LCEL.

• Legacy Chains

• Created by subclassing from a previous Chain class.

• Operate independently from LCEL as distinct classes.

• 'create_sql_query_chain' Using LCEL
• Function Purpose

• Produces SQL queries.

• Required Parameters

• llm: Language model used (e.g., gpt-3.5-turbo-1106).

• db: SQLDatabase for query generation (a wrapper around SQL 
Database connection using SQLAlchemy Core API).

• Text-to-SQL prompt: Prompt used (default is None, chosen 
based on dialect if unspecified).

• Top_k: Number of results per select statement (default is 5).

• Additional Parameters

• top_k: Defines the number of results per select statement, 
corresponding to the ‘k’ argument.

• table_info: Receives table definitions and sample rows.

• table_names_to_use: If specified, only those tables are 
included; otherwise, all tables are included.

• dialect: If present in the prompt, the database dialect is 
conveyed through this parameter.

• Returns

• A chain capable of receiving a question and generating a SQL 
query to address it.

def get_table_details():
# Read the CSV file containing Table Names and Descriptions using Pandas DataFrame
table_description = pd.read_csv("Data/table_descriptions.csv")

# Retrieving Table Names and Descriptions from the DataFrame
table_details = ""
for index, row in table_description.iterrows():
table_details = table_details + "Table Name:" + \
row['Table'] + "\n" + "Table Description:" + \
row['Description'] + "\n\n"

return table_details

#Creating a Pydantic Base Model
class Table(BaseModel):
"""Table in SQL database."""

name: str = Field(description="Name of table in SQL database.")

def get_tables(tables: List[Table]) -> List[str]:
tables = [table.name for table in tables]
return tables

table_details = get_table_details()
table_details_prompt = f"""Refer the Above Context and Return the names of SQL Tables mentioned 
in the above context\n\n 
The tables are:

{table_details}
"""

table_chain = {"input": itemgetter("question")} | create_extraction_chain_pydantic(
Table, llm, system_message=table_details_prompt) | get_tables

# Convert "question" key to the "input" key expected by 
current table_chain.
table_chain = {"input": itemgetter("question")} | 
table_chain
# Set table_names_to_use using table_chain.
full_chain = (
RunnablePassthrough.assign(table_names_to_use=table_chain) | 
generate_sql_query
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Hands on Tutorial

Colab

https://colab.research.google.com/drive/1_1BAPutSPI1qXmZweFbK2pMP-
UlYAq2K?usp=sharing
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https://colab.research.google.com/drive/1_1BAPutSPI1qXmZweFbK2pMP-UlYAq2K?usp=sharing
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Hands on Tutorial

SQL Agent

https://drive.google.com/file/d/197eAnyQJC3fwcx4iFa71zJnZmxPbV_-
B/view?usp=sharing

Access DB through RAG and LLMs

https://colab.research.google.com/drive/1j-
MyhyFlxDRe3Suus4Ev5NhIZui_IMaU?usp=sharing
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