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Representation learning

* “An Al must fundamentally understand the world around us, and we argue
that this can only be achieved if it can learn to identify and disentangle the
underlying explanatory factors hidden in the observed milieu of low-
level sensory data.”

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new
perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.
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Representation learning
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Representation learning
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Representation learning

* Particularly well suited to molecular biomedical data because of
* its scale and high-dimensionality
« its difficulty for easy interpretation

* When it comes to scientific data:
« We only have partial knowledge about their internal structures

« Thus, if the learned representations could re-discover some known
patterns in the data, they could can help us discover more potentially
meaningful ones.



Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 1: Multi-scale Modelling for Brain Disorders*

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

* Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

¢ Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

* Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

» Part 3: Variant Impact for Precision Medicine

Need for variant catalogs & interpretation
resources

The Dilemma of Genomic Privacy: The « EN-TEx: a Resource for Variant Interpretation

genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

30 SNPs from "environmental" coffee cup
sample sufficient for ID

Based on finding most likely haplotype
"trajectories" in a genome DB

Single trajectory for a unique match for an
ensemble of equivalent ones for near match
Calculating a PRS score over an ensemble

>1500 functional experiments with diploid
genomes of 4 individuals

Differential mapping to haplotypes

+ Development of AS Catalog

>1M allele-specific events, over all samples
from jt. calling

Useful biological interpretation: chrX, SVs,
Igf2-H19

Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

Relating AS events to tissue-specificity &
conservation

*  Transformer model to Predict AS Variants

Identification of sensitive TF binding motifs

Model can successfully predict if a SNV will be

AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

Interpretation in terms of anchoring co-factors



Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Many psychiatric conditions are highly heritable in comparison to
other disorders, but their mechanisms are unknown

Sample
Disease Heritability SNP._ba.S?d PMID Size Molecular Mechanisms
Heritability
(1000s)
Schizophrenia 79% 24% 35396580 320 (C4A)
Bipolar disorder 60-85% 16-19% | 34002096 414 -
Alzheimer's disease 60-80% 3% 34493870 1,127 |APOE, Tau
30% 18% 38689001 1,029 |Renin—angiotensin—aldosterone
50-60% 6% 26343387 184 Atherosclerosis, VCAM-1
Stroke 329 17%-21% | 33773637 262 Reactlv.e oxygen species (ROS),
Ischemia
Type-2 diabetes 26% 20% 30054458 659 Insulin resistance
31% 22% 38741014 40 BRCA, PTEN

*https://www.snpedia.com/index.php/Heritability



Sample Size

PMID

Great Progress in Finding Variants Related to Brain Diseases:
The history of reported schizophrenia GWAS
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https://www.cambridge.org/core/search%3Ffilters%255BauthorTerms%255D=Sophie%2520E.%2520Legge&eventCode=SE-AU
https://www.cambridge.org/core/journals/psychological-medicine
https://www.nature.com/articles/s41586-022-04434-5

Assessing gene regulation to understand psychiatric disorders

Addressing the fact that molecular mechanisms are not known for most psychiatric disorders
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The PsychENCODE Consortium: Focusing on the PFC

D PsychENCODE 200 researchers at 40 institutions

Main goal: Understand the genetic, genomic and epigenomic etiologies of schizophrenia,
bipolar disorder, autism spectrum disorder, and other neuropsychiatric disorders

The prefrontal cortex (PFC) not only governs executive
functions, but is also responsible for:

* behavioral regulation and mental health
* development and plasticity
* interplay with neurotransmitter systems

SnATAC-Seq
snRNA-Seq

12
lectures.gersteinlab.org Elert, E. Nature 508, S2—S3 (2014)



Advantages of single-cell resolution in the brain

Bulk Datasets - Single-cell Datasets Spatial Analysis Cell-to-cell Connectivity

R VTR W R

WY

Images generated using the DeepAl Image Generator tool

13
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How

PsychENCODE The Human ENCODE

fit§ into the Genome Comparative
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Integrating multi-omics data for 388 adult brains

388 Samples Single-cell data for 388 individuals (spRNA-seq, genoty_/pes, _~6O
snATAC-seq) — one of the largest single-cell collections in the
3 2.8M Nuclei human brain

Integrated study derived from 12 cohorts (PEC, AMP-AD, & other
studies) for population and cross-disorder comparisons
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LObjective. To synchronize activities across consortia for consistent DLPFC cell type definitions ]

Stable recurrence of cell subclasses across diverse datasets

BICCN: N
Multi-modal DLPFC samples from 5

individuals
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Reference Atlas
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scCREs show specific enrichment for TF motifs and GWAS signals

~560,000 single-cell cis-regulatory elements
(scCREs) from ATAC peaks, more enriched for
brain traits in GWAS than bulk cCREs
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employ distinct groups of
TFs.
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors
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~53% scQTLs cell-type-specific
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sizes and ALT haplotype fractions
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Matrix gymnastics: Cross-study data integration, Challenges in Slowly explore ‘decision space’ - details re. pre-

filtering, and matrix synchronization Calling Cell processing (e.g., expr normalization, etc)
> Filtering: _ r
- Genes type specmc - log TPM-normalization?
- Nuclei eQTLs - log CPM-normalization?
- Variants (SCQTLS) - sc-transform normalization?
- Individuals - TMM-normalization?
> Matrix synchronization - Thresholds for # min nuclei & samples
. .. . L. . - f MAF fil
Data sparsity and limited statistical power in snRNA-seq contexts Stage to enforce tlters

B . e ’ Batch effects (mult. cohorts): Optimizing calling setups
" rommeurons (ex: selecting covariates and numbers of PCs to include)
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‘Semi-blind’ validation: Devising and performing quality checks and
‘validation” without gold-standard reference dataset for comparisons
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Multi-step (hierarchical) scheme to identify significant eGenes & their associated eSNPs

(GTEx compatible approach)

e e - ——
—W— ez HeNe -

W s
—

Genes are ordered by

descending significance U
Step 1: Identify the most significant eSNP
per gene, and then correct p-values for

multiple testing within each gene to
derive adjusted gene-level p-values

p(min)adj = AUC = 1E-2

count

p(min)nominal = 1E-4

0.0 02 04

N, N

Step 2: Multiple testing correction (BH
to estimate FDR) is applied to the set
of all ~20K adjusted gene-level p-

values to yield the significant eGenes
(FDR 0.05)

Step 3: Pull in all significant eSNPs
associated with each significant eGene
by using the scheme adopted by GTEx

pnomimanl_thresh(EGene) = F_l(pt)

(1sod gam) uosuiqoy g wo.f paidopy

F(pnomimanl_thresh

(eGene)) = p,

P-values
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Constructing cell-type-specific gene regulatory networks
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TFs show differential usage (i.e. out-hubs, bottlenecks) across cell-type GRNs
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Disease-specific alterations in cell-to-cell communication
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Disease-specific alterations in cell-to-cell communication

Outgoing Communication Pattern Clustering Differential Analysis of
Control BPD WNT Pathway
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a z
N
a e
o SCz
= vs
O
i Control |
Cell Lig-Rec  Cell Lig-Rec
Types Patterns Pathways Types Patterns Pathways

Large-scale changes in cell-cell communication patterns seen in individuals with neuropsychiatric disorders
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Linear Network of Cell-Type Phenotypes (LNCTP) model framework

Gene-gene connections Phenotype

Prediction
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Linear Network of
Cell-Type Phenotypes:
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Latent embeddings
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LNCTP shows improved performance for imputing expression

o
~
o

:‘l\ I
_9035—*| S N/
[7)] | <
ggosof | \}%
x |
2025
<

-Prediction of single-cell expression in samples
based only on genotypes

0.20+

0.15¢

LNéTP Baseline LNCTP (bulk)
-Improves prediction of cell-type expression

variance compared with other methods (i.e.
baseline or bulk RNA models, PRS)

— Exc — Micro

Cell Types _ Inh
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Using LNCTP to link genes, cell types, and phenotypes

Results from LNCTP allow the
association of traits with genes
in a cell-type-specific manner

By tracing the influence of genes through

visible and latent layers, cell-type-
specific effects towards disease
can be identified.

~250 total gene + cell type pairs

Gene cell-type pairs

LINGO2 @

TCF4@
SF3B2@

MEF2A @ ...
D1® ...

/ ANKHD1 @) ...

ESRRG® ...

RORA @
—~

Salient pathways from genes through cell types to traits

Sal Coh
4.2e-3 0.49
8.9e-2 0.03
1.4e-1 0.02
5.6e-2 0.01
1.1e-3 0.05



LNCTP examples: Prioritized cell types for BPD genes

Results from LNCTP allow the 'e)
association of traits with genes
in a cell-type-specific manner O
B [ o)
o (€] O
(6] ()

MEF2A links to BPD
through Microglia, Inhibitory
and Excitatory Neurons @

LINGO?2 links to BPD
through Inhibitory and
Excitatory Neurons 30

\




LNCTP examples: Prioritized cell types for SCZ genes

Results from LNCTP allow the
association of traits with genes
in a cell-type-specific manner

Highlights in SCZ include TCF4, RORA, &
Micro-Exc linkage in cell-to-cell network

RORA @ -Exc 8.9e-2 0.03

“~-SCz- 1.4e-1 0.02

TCF4 @ - 5.6e-2 0.01

SF3B2 @ -Bulk 1.1e-3 0.05
MEF2A @) ...
ID1@® ...
ANKHD1 @) ...

ESRRG® ...

O 2
g 0@
i o [a A [
¢ O 0 °°°
L@ g ¢ /
o @ @
@
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Comparison of LNCTP
predicted network to Glu
neuron CRISPR experiments*

Drug 1. Choose
targets genes to perturb

2. Fix one gene to
high/low value

3. Re-impute
all other genes

*Tian, R., Abarientos, A., Hong, J. et al. Nat Neurosci
24,1020-1034 (2021).

Pearson correlation

0.8 —
1
0.6 '
1
1
0.4 |
1
0.2 -1
1
0
—_
0.2
0.4
-0.6 1
1
0.8 1
p=0.0198 o
P 1 1 ]
Matched Unmatched

Perturbation direction matching

Comparing LNCTP and CRISPR perturbations

Perturbations in excitatory neuron GRN
Upper decile of genes according to LNCTP z-score changes
Perturbation directions are matched or unmatched
o Unmatched means LNCTP z-score changes correlate
with CRISPR fold-change vectors for all genes except
the perturbed gene
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LNCTP model: Perturbation Analysis

Direction of more case-like behavior
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LNCTP model: Perturbation Analysis

Direction of more case-like behavior

p=1.4e-4
Controls : Cases Pertinrh p=(;.53
U 1500 - Perturbations:
. ° | Apply - '
. . a T .
[ . ! At > L | Genes Direction
/| e 1 A L4 Perturbation 1000 - —_
/ | ] . 1 Drugs/Key | reversed
/ 2
’ | E 500 - _ 2 Background | reversed
| U o . 3 | Background | forward
i "
[ ] ° . T 4 | Drugs/Key | forward
2 L —_
|
Original Gene Expression Profile Perturbed Gene Expression Profile : -
1 1 - 1
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AN \.
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LNCTP model: Clue.io Analysis

Number of significant compounds in CLUE database

Find compounds with complementary
gene expression perturbations

I

CLUE analysis ANKHD1 797 234 15 | 405 | 375 13 | 1808 | 253

1

Perturbation analysis

Gene Bulk | Astro | Endo | Exc | Inh | Micro | Oligo | OPC

ESRRG 184 52 105 | 403 | 89 413 | 325 | 206

ID1 400 | 402 | 756 | 389 | 119 | 9073 | 594 | 1005

Well-known drugs used for neuropsychiatric disorders: LINGO2 | 431 | 791 | 346 | 25 | 16 | 1688 | 492 | 1454
dopamine receptor antagonists,
dopamine receptor agonists,
g[utamate receptor antagonists, RORA 242 196 301 | 156 79 1289 | 673 | 4605
calcium channel blockers, SF3B2 | 176 | 100 | 1101 | 421 | 1014 | 4688 | 774 | 722
GABA receptor agonists,
MAP kinase inhibitors

MEF2A 335 283 118 8 1 2670 | 661 349

TCF4 489 185 7 253 | 96 | 1063 | 347 | 385

Compounds with unknown effects:
Cytokine IL-1a: potential in reversing the expression changes of the ID1 gene in microglia
AKT inhibitor 10-DEBC: potential reversing the effects of TCF4, ID1, RORA, SF3B2
Consistent occurrence of bromodomain inhibitors for reversing effects of all eight genes 35



Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




el Ty The Other Side of the Coin
Ev‘gﬁﬁiﬁeua' for Genomics: Why we should share
ilustrated by Michael Martchenko Z

* Sharing helps speed research

* Large-scale mining of this information is important
for medical research

» Statistical power
* Privacy is cumbersome, particularly for big data

A E
MSCHOLASTIC i

The Dilemma

* The individual (harmed?) v the
collective (benefits)
- But do sick patients care
about their privacy?
* How to balance risks v rewards
— Quantification . - s Do Parkins

[Economist, 15 Aug ‘15]

[Yale Law Roundtable (‘10). Comp. in Sci. & Eng. 12:8; D Greenbaum & M Gerstein (‘09). Am. J. Bioethics; D
Greenbaum & M Gerstein (‘10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB (‘11)]
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Privacy: Does Genomics has similar "Big
Data" Dilemma as in the Rest of

Society? O
0. 90 6
* We confront privacy risks every day we access the ~ oF
internet (e.g., social media, e-commerce). Eﬂ

* Sharing & "peer-production" is central to success — - e ST
of many new ventures, with analogous risks to (L)

genomics @ @

* EG web search: Large-scale mining essential

Genetic Exceptionalism :
The Genome is very fundamental data, potentially very
revealing about one’s identity & characteristics
Personal Genomic info. essentially meaningless currently
but will it be in 20 yrs? 50 yrs?
Genomic sequence very revealing about one’s children.
Is true consent possible?
Once put on the web it can’t be taken back
Ethically challenged history of genetics
Ownership of the data & what consent means (Hela)
Could your genetic data give rise to a product line?

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct), D Greenbaum & M Gerstein ('08). Am J. Bioethics; D
Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist;
Photos from NY Times, it.wisc.edu]
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Risk from environmental samples: sparse and noisy genotypes

» Swabs of objects are easy to obtain
* How much information is contained in such DNA samples?

* Created a population-genetics-inspired approach* to quantify the risk:

PLIGHT = Privacy Leakage through Inference across Genotypic HMM Trajectories
* Found risk of identification is high even with tens of noisy SNPs

* |dentified a way of sanitizing data before publication

*Emani, P.S.; Geradi, M.N.; Gursoy, G.; Grasty, M.R.; Miranker, A.; Gerstein, M.B. "Assessing and mitigating privacy risks of
sparse, noisy genotypes by local alignment to haplotype databases", Genome Research (2023), Vol. 33, Iss. 12, Pgs. 2156-2173
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Quantifying identifying information in the limit of small SNP sets

Space of Reference Haplotypes

OO ® 0@ o0 0°00®©®-0000®€®O0 e o

N>=30
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Single Haplotype Pair

Homozygous Reference
Homozygous Alternate
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Direction of decreasing SNP information
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The L1 & Stephens HMM: Effect of mutation/genotyping error

(Li, N.; Stephens, M. Genetics 2003, 165, 2213-2233.)

When identifying individuals, can include the effects of genotyping error/noise using a population genetics approach:

HMM

[=1 (=2 [=3 [=L-1 [=L
OO OO b
o __.__s___ _\ttation/Genotyping
Maternal ; «/ \\ idden Layer
remnoiyee < () () N () sidaen zer
Pat 1 )
i ORI ONOREN IO R0

Error rate A = 0.05 v ! G
o 1 2

0 0.9025 | 0.095 0.0025
ZW4+z@ 1< 00475 |  0.905 0.0475

2 0.0025 | 0.095 0.9025

v

Probability of observing a genotype G of 0, conditional on the sum of the haplotypes being 1



The L1 & Stephens HMM: Effect of ancestral recombination

(Li, N.; Stephens, M. Genetics 2003, 165, 2213-2233.)

HMM with recombination
=1 =2 [=3 I=L-1 =L

Observed G @ ces @ @ Visible Layer
Genotype il

Maternal (,) @ 0 o
Haplotype Ancestral
Recombination
Paternal
@ ( : ) ( )
Haplotype <l @ o c som= 2

- Z?
Haplotype 1 = e ,//
Haplotype 2 den 00 et
Haplotype 3 R ’ Panel of
Haplotype 4 .-~ Reference Haplotypes
Haplotype N = s an as s ils s s s San S g sl S i s
Best-fit Genotypes | 1&4 . 2&3 | 2&N Haploid Segment
3 | | I 1 Diploid Segment
— Mosaic Genome
O Homozygous Reference
Query Genotype O © 0600606006060 0::000©0 00 e ee b :::::Z}?;::s”"“‘"‘
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H =

The L1 & Stephens HMM

(Li, N.; Stephens, M. Genetics 2003, 165, 2213-2233.)

(=1 (=2 [=3 =L-1 [=L
g}earsxii,.;:cei y Visible Layer
Mutation/Genotyping
_______________________________::i_ - 7 Terror~ T T
/
Matirnal z.l(,) @ 0 I @\ @ Hidden Layer
i,
Hap Otype ' ‘ Ancestral \\ = //

Recombination
Paternal 2o ‘ .
Haplotype il

Addresses: What is the probability of observing a set of genotypes, based on underlying panel of
haplotypes? P(G;|H)

= Encodes recombination

oMo
5 > k .
J Encodes mutations or

genotyping error

L
Set of all reference phased genotypes Zj(“) = { j(gg,l}lﬂ: Set of all possible haplotypes at the observed loci [
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PLIGHT
Viterbi algorithm for most-likely path

Haplotype Inference: Construction of One Best-fit Piecewise/Mosaic Genome

Haplotype 1

Haplotype2 - - - - - - - NN——_—_—,_——

Haplotype 3

Haplotype 4

Haplotype N

Best-fit Genotypes | 1 &4 | 2&3 , 2&N ,

— Mosaic Genome

Query Genotype O ®©® © @00 © O ©® @90 © 0 0 O o0 0 o

Search through the space of haplotype pairs (total dimension = N>XN) to match the diploid genotypes

Panel of Phased
Reference Genotypes

Haploid Segment

Diploid Segment

O Homozygous Reference
@ Homozygous Alternate
(D Heterozygous

® Unobserved

Each of the two haplotypes can independently recombine with other haplotypes

Allow for mutations/genotyping error

Result: Piecewise matches of reference haplotypes to observed genotype
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PLIGHT

Viterbi algorithm for all equally likely “best-fit” paths

@ @
z;Vz,

argmax

PG|z, 2z%).P (2,27 |n)

€ Set of all possible haplotypes

For very sparse data, several paths may be equally likely.

We term these paths
‘Genotypic Trajectories’:
to signify the sequential
exploration of haplotype
space.

The number of independent
trajectories in any region
gives a sense of genotypic
‘entropy’

® © 6 6 6 O ©# O © 0 -

® O ®© & ©# O o o o
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|
|
|
|
l
|
|
|
|
|
|

|
|
87&809 ' 820&931
| /
| &4 | | 2&N |
! T3\ : :
19846 ' O\ 424&681
|
16&235 I Equally likely set of \ *0&V
! best-fit genotype
g J trajectories
™ Se 1 i
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45



Privacy risk of partial/regional genotype matching

87&809
i Example:
| 164 | Calculate Polygenic Risk Score (PRS)
across all unique haplotypes
| 19846 | in Segment 1
| i
| 46&235 I Haplotype 87 *
|4 p! Haplotype 809 —# *
Segment 1
| | Haplotype 1 %
Pool regional Haplotype 4 s *
genetic Haplotype 12 *
information Haplotype 46 . .
across haplotype
matches Haplotype 235 — % %
Known Disease Risk Alleles T T T T
with Different Statistical Associations
Population

Distribution

of PRSs

PRS
Is the distribution of best-fit haplotype PRSs
statistically significant?
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A few noisy SNPs can pose privacy risks

noise

HG00360 HG00342

]

['HG00360_B', 'HGD0360_A'] ['HG00342_A']

Chromosome 1

47

Identified individuals with as little as 10 SNPs; robust to modest noise
Found 1st-degree relatives (parents, siblings, children) with ~20-30 SNPs

Environmental (saliva) swab SNPs still allow identification (with ~30 SNPs), in spite of

Recommended sanitizing SNPs that specify identity with high degree of certainty

HG00360 HG00342

;I-I-I —_—

['HG00342_B', 'HG00342_A']

L['H600334_A'] (rHo00342 8", 'Hsoo334_A-]l['H500342_9-]J
I T > T
: f

%/ﬁﬁf&{{i
SSSSSSSNCLLL0808080040440
“2%%%%%%@%%%%%\%%%%%%%@%

Chromosome 2




Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Overall Problem:
Finding Key Variants in
Personal Genomes

CAN YOU FIND THE PANDA‘?

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few
high-impact variants are associated with disease

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD
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Overall Problem:
Finding Key Variants in
Personal Genomes

,CAN YOU FIND THE PANDA? |

= g | Gl | Vs QN W
3 S | e

........

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

“) (& . . - -
Gl )l @
In rare disease, only a few S A | oA
high-impact variants are associated with disease sl (2[5l (7 9, oy 377 72

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “"functional” variant amongst many in LD

Thus: Need to find & prioritize high impact variants.
Particularly hard for non-coding regions.
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Basic Science = Medicine: Creation of
Variant Catalogs of healthy & sick people

[} .'o. ®
. (500° o

THE PRECISION MEDICINE INITIATIVE

frvhifttiat

II: 2eIIAGTC

INITIATIVES

nature

CANCER
CATALOGUED

Ga FOUNDATION

Medical Big Data: Promise and Challenges (Lee and Yoon , Kidney Res. Clin. Pract., 2017)

STARTUPS

Resources for
Variant Interpretation

More direct & clear
interpretation through
molecular endophenotypes
(gene expression)
rather than
"macro phenotype"
(disease diagnosis)

natuire
o

GTEX
@iGVF
o

HUMAN
CELL
ATLAS
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Gerstein Lab

Learning the DNA regulatory grammar

CCAAT Binding Factor

TACCCGTCAGTCTTCTAATCTCAGCAAATCACTTCCATGACGTTGCTGTACGAAGCTGTCAGGCCTCGACTAG 490
ATGGGCAGTCAGAAGATTAGACTCCTTTACTGAAGGTACTCAACCACATCTTCCACAGTCCCGACTGATC 490
Selenocysteing tANA Activating Factor
GGTCCCTGCTGTCGAGTCTGGCCACAACTCCAGCECACTTCCCCATCTCCCAGCCEGCCCAGCEAGETGLCT 560
CCAGGCACGACACTCACACCCETGTTGAGCTCCCTGAAGGCECTACGAGGETCGECCGEETCEGCTCCACGEGA 560
ZIC-family
Ubigquiitous GLI- Krueppel Like Zinc Finger
GCGAGACGCCCAGGCCAGATGTTCTGECCAGCGCTCGACGTCACCTTTCCATCGACGTCACCAGCCGCTCACGAR 630
CCTCTCGGETCCGETCTACAACACCCETCCCGACTGCAGTECAAACGTACTGCAGTCCTCEGCGACTGCTT 630
RPS8 Zinc Finger Pratein,.. .cANMP-Responsive Element Binding Protein
Qgtamer binding protein
CCACACAGACGAGGCGCCTGTCAGCTCACCTCAGAGCCGCAGGCAACTTCTTAGACGCGGEGAACTGECLGLC 700
GGTGTCTCTCTCCCCGEACAGTCGACTGCGAGTCTCGCETCCECTTGAAGAATCTCGCCCCTTCGACCCGLEGE 700
Heat Shock Factor
TCCTATTCTACCTTGACCGTCCCGAATAGTCAGACGCTACAGCGAGCCCAAGCGCCCAAGCAGCTCAGCAACC 770
AGGATAAGATGGAACTGCCAGCCTTATCACGTCTCGATETCCTCGEGCTTCCCGECTTCCTCCGAGTCETTGE 770
| Vertebrate SMAD Family TF
Kryeppel Like Factor
GCTACCTCCCTCTTTCCTTGECCCTTATCCGCETCTTCTCTAAGGCCCAGGAGCGGTCCCGEGCAGCGECE 840
CGATGCAGCCAGAAAGCGAACCCGGAATAGCCGCAGAACAGATTCCEGGTCCTCECCACGGGCCGTCELLEL 840
GATA Binding Factor
Vertebrate Homaolougugs of Enhancer Split Complex 1 Nuclear Respiratory Factor1 ~ Human ETS1 Factor
CGCTCACGAGTCCGCCGCTGCGAGGCCETCACGCCCACGCACGCTTETGCCCAAGCCCETTCCCTCAGAAC 910
GCGAGTGCTCAGGCGGCCACCTCCECCAGTGCECETGCGTECGAACACGCETTCGGGCAAGEGGAGTCTTE 910
EGR/nerve growth factor induced protein C
Myc Associated Zinc Fingers  Vertebrate Homolcgue of Enhancer Split Complex 2
CCGGAAGTGCCACCCEEREERICAGCCACETEEETCEAGCTGEEECECACCTCCCHGEEEAGTCTATCC 980
GGCCTTCACGCTCCGGCTCCTCTCECTGCACCCAGCTCGACCCCEGCGTCCAGCETACCCCCTCAGATAGE 980

https://commons.wikimedia.org/wiki/File:Possible Transcription Factor Binding Sites in C120rf66 Promoter Region.png
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors
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Construction of personal diploid genomes

Diploid genome of individual 3

[ f
| A->C |[=»{ AIC->A[C & —_—
——
CallSNPs  Phase SNPs Hap1.fa o | '
+ Indels + Indels Phased ) p=—————
SNPs, py——————
indels & 2 __ | ‘
SVs.vcf 3 I 20Mb
O
g
Assemble O s
- GAT GAT/XXX e C e
HQ Reference ™y = Diploid O i ——
-> XXX -> GAT|XXX Sequence v .
Call SVs Phase SVs ‘ Y e
& Local Assembly Rt % J
Hap2 fa -
. Phased block with parental origin
g Hap1 ' Paternal
* long-read (PacBio, 10x) and short-read (lllumina) DNA-seq & | Hap2 Maternal

Phased block .-~~~ ~~--__ Imprinted genes

* >20K long structural variants (SVs) per person

SNV Indel SV
*  We integrate WGBS data to call imprinted regions and phase

maternal and paternal haplotypes

Personal
Coordinates
@
O
@]

Lectures.gersteinlab.org — Rozowsky et al. Cell (‘23)
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How to map functional genomic data

Map to reference genome

%% —
Reference /F

Annotation /\K “—

Map to diploid genome  —

i —

RNA-seq

|
P “\—
Personal d“ o iy Al
Annotation l MQ A _— —
VAN
| ] | ] [ ]
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Personal genomes and the detection of allele-specific events

Personal genomes allow to study a broader set of SNVs, including individual-specific SNVs

Read Stack

.I I . (e.g., from RNA- or ChlIP-seq)
/ has necessary info. to
determine correct haplotype

to map to

Allele-Balanced Locus but tricky mapping issues must
be resolved

ACTTTGATAGCGTCAATG

CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC
TTGACAGCGTCAATGCAC
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC

TAGCGTCAATGCACGTCG

m Maternal

m Paternal
Allele-Imbalanced or Allele-Specific (AS) Locus 58
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Personal genomes and the detection of allele-specific events

AS event calling

A
_ﬁ $_
Hap1 Reads _A L T
Hap1 A T T
Hap2 G C G
Hap?2 Reads G = G

Imbalance Test 13A:1G 14T:2C 1T:1G

AS hetSNV Events —] ——

v v X

Imbalance Test | 27 Hap1:3 Hap2 {

N 7N N N

AS Elements —§ —

AlleleSeq pipeline

|dentify accessible SNVs

Perform beta binomial test

ldentify heterozygous AS SNVs

Merge reads within an element (genes, cCREs)
Perform beta binomial test

Identify AS elements (genes, cCREs)

59
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Aggregating AS Events into Catalog & their GWAS/eQTL Enrichment

60

: LIVER @
@
EX: ) i .
H3K27ac, Ind. #1, Spleen _ 7 y = m
has ~2,600 AS SNVs ~4Xincr.| g Lo
’ ineQTL| ZA. o 40 .
enrichment" - ﬁg R " N——"
g‘l o i O-- T B o '
AS SNVs Across Tissues: 3 Tt core o oror.
: 5,500 SNVs o S o[ e o ~
Pooling: 27,000 SNVs Similar ! i == %
(Allows for Joint Calling) results for LT T S
GWAS 9 g
I__‘ —] o §
AS catalog 3 : ° ;
4 Individuals SNVS 2
12 Assays >300X more precise localization of reg. elements (cCREs): s
. total ~0.9M total => ~117K active in spleen => ~2.9K AS in spleen 2
31 Tissues 5



The classic example of H19 and IGF2 allele-specific activity

hap 1

control region

hap 1 -hap 2
paternal g .
Imprinting e

maternal Q
Chr11 265 kb
H3K27ac| 4 | s .
7 - | : .
TNNT3 H19 IGF2
s 19 " P—
CTCF| Y '™ . .
P 2@ rna| i ) :
H19 IGF2
Recapitulating a Classic Story AS Hi-C analysis ==> Different M & P Chromatin
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Relating AS SNVs and TF binding motifs

whhetemetene bbb Genome sequence

- -

" A ASSNV A NON-ASSNV There are many SNVs in the genome
(for a given assay) * Some can impact activity (AS SNVs)
 Some don’t have any impact (non-AS SNVs)

B TF bindin
' 8 ) We can identify TFs with motifs more sensitive to

---------------------- mutations, showing enrichment in AS events
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Cross-referencing AS SNVs and TF binding motifs identified AS “sensitive” TFs

Top195 - Significantly enriched motifs

Top100 | e All ChIP-seq
® H3K4me3
® H3K9me3
6 4 . me ~ N\
A(e00ce0
ZNF460 Shcy-YWWWe.
54 o ZNF460
n s‘
> W ) °
<% Motif+ | Motif-
3 4 7 Ah AS |0.04M| 0.4M
< \_ . non-AS| 0.3M| 16M
"E 3 A Y Y Oddsratio=49 )
@
e
S 2
c
L
1
DLX5
0
1 1 1 1 1 | 1
0 100 200 300 400 500 600
Motif rank
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Cross-referencing AS SNVs and TF binding motifs identified AS “sensitive” TFs

Enrichment of AS SNVs

Top195 - Significantly enriched motifs

Top100

® All ChIP-seq
® H3K4me3
® H3K9me3

Fraction of SNVs

0.4
0.2

0.0
0.4

0.2
0.0

Motif+ | Motif-

AS [0.02M| 0.3M

FOXO3 non-AS| 0.4M| 1.6M
Odds ratio=3.0
TTCQQgéCAC

non-AS

-
R

- N M T 0 © N~ 0 OO O «
- -

5 Nucleotide position 3

Motif rank
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Predicting AS activity just from nucleotide sequence (Simple)

C CTCF

T T C Motif model

mmmmmmmmmmmmmm
————————

0.8 1 Simple logistic
B A e AN\ WA 0 regression
CCCAG 9 o - models based on
. | > = | £3 overlapping &
5 < 5 OE -
3 c C T S nearby motifs
H A T 0.5 >
E AUTVA ey, A Yyea
3 ;C ¢C

e FEach TF has a specific sequence that defines its motif.
Can we predict AS events from those overlapping TF sequence motifs?

e EX: Predicting CTCF AS activity from its motif

e Intuition: Might think AS variant “knocking-out” a TF motif

would give rise to differential AS binding
67
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Predicting AS activity just from nucleotide sequence (Deep Learning)

Model taking into account a larger 250-bp window around the SNV yields better predictions

Validation performance

-=-== Accessible SNV : 0.8 -
Roadmap
_ o i
0.7 1 35 !
8) 2 !
= g |
] “0
E)E 0.6 L% £ :
1
1
1
1

0.5
+256 || |
Transf ! CTCF CTCF POLR2A H3K27ac
ransformer : .
- @# anstormer /. T : Motif model Transformer

-256

model H
:
l

S Sequence-based
AS prediction

Highlighted
Motifs

Flanking sequences
68

Lectures.gersteinlab.org — Rozowsky et al. Cell (‘23)



Gerstein Lab Yale

Contextual language model  vayer[70%]atention: i :

[CLS]
o Attention the
« How “relevant” each part of the o
sentence is to the rest sat
. . on
« L XL attention matrix for every the
word against every word mat
» Calculated using the whole [SEP]
sentence the ~
cat
lay
on
the
rug
[SEP]
Vig, Jesse. "BertViz: A tool for visualizing multihead self-attention in the BERT 69

model." ICLR workshop: Debugging machine learning models. Vol. 23. 2019.



Gerstein Lab Yale

The The
animal
Contextual language model
Cross Cross
the the
street street
The animal didn't cross the street because [t was too tired. because because
L'animal n'a pas traversé la rue parce qufl était trop fatigué. it
was was
The animal didn't cross the street because [t was too wide. too too
L'animal n'a pas traversé la rue parce quellé était trop large. tired
The The
animal animal
didn’t didn’t
Cross Cross
the the

street

because because
it
was was
too too
wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html ) ) 70
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Gerstein Lab Yale

Transformer encoder & BERT

KSP Mask LM Mask LM \ /@/@@AD Start/End Spax

* & s > oo
Le )] e ) (W) Le ) e ) (W)

...... .’.
Attent|on BERT .................. ’ ..h .= . BERT
layers

[Zea ]l & |- [ & ][ Eeem | & |- [&] [eafl & | [ & ][ B[ & | [&]
=~ 1] LT LT [ i Lr LT L o

(=) -

o) (o) (=) - (=)

|_|_l

Masked Sentence A Masked Sentence B
*
Unlabeled Sentence A and B Pair

I_'_I

(o)

NN

—
EE). ECED -
I_l—,

Question

Question Answer Pair

Paragraph

*

/

Pre-training Fine-Tuning

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018). 71



Gerstein Lab Yale

Transformer encoder & BERT

- DNABERT )

emmesaing |t || b |[ o |[ e [t | one [ ten | [ oo | [ o | [ oo | [ ter | [ hen |
Emboccing | € || E2 || Es |[ B || E | o[ Ew || Es |[ Ew || En || En || 2 |
+

Embodaing | Eias || Ensc | | Eacn | | Eoac | [ Enor | o[ Ecrr | [Erwas] [Etwns] [Erwased | Ecns || Exsr |

1 Feed to the Embedding layer

[CLS] AGC GCA CAC ACT e CTT [MASK] [MASK] [MASK] CAG [SEP]
A

sel;‘::;ce + Mask (Only in pre-training)
[CLS] AGC GCA CAC ACT e C G GC GCA CAG [SEP]
1 Tokenize
sg;'ﬂ;'.',’c'e AGCACTGCTAICAIGCTTGCAG
Ji, Yanrong, et al. "DNABERT: pre-trained Bidirectional Encoder Representations from Transformers 72

model for DNA-language in genome." Bioinformatics 37.15 (2021): 2112-2120.



Gerstein Lab Yale

Allele specificity prediction

 Trained on the aggregated AS set of donor 3
« +128bp sequence context

(@)]

* Positive vs negative: AS vs non-AS heterozygous variants s
AS/non—ASQ é

o)

[ Classifier ] =

Sequence-level ____/j;l__*nln_l_nnl_nl_"__ln_l ______ N Contextual %
representation :r : E;nbee:j( dLiI:gs !
| : |

| ! @

! Transformer ™ ! =

| Encoder ! O

. _/ Embeddings g

@ @ x

lC1LS K-mer §

representation 73 i



Gerstein Lab

Sequence embedding

Fine-tuned DNABERT

Positive
Negative

Untuned DNABERT

60 1

40 4

i A Positive
i e - Negative

T T T

-40 =20 0 20 40
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Gerstein Lab

Allele specificity prediction

Yale

CTCF RNASeq ATACSeq EP300
0.9 0.9

0.8 - 0.8 - 0.8 - 0.8 -
0.7 - 0.7 - 0.7 - 0.7 -

o

. E - - o

0.6 0.6 0.6 ‘ 0.6 P
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0.5 - 0.5 0.5 0.5 =
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0.9 0.9 0.9 0.9 5

o
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o
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0}
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|
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N
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Predicting AS activity just from nucleotide sequence (Attention)

Motif count

chr19:13234712

150 A

100 A

50 A

=

. :

7C§CGGGAAAAGAAGGATAAGAGCACATCI'GGCCACCCCCACACCAGAAAAGGAGGAGGAGGGCACGCCCCCI’ATCQGAAGAGAAGGCCGGCACGTCCCCI'ACCGGAAGAGAAGGGCACGCCCCCI'ACCGGAAAAGAAGGGTGAGGGCGZGS
EGR2/VEZF1... PAX6 NFATC2 VEZF1/ZNF7...
ZNF740 — VEZF1 CTCF HES2/VEZF1...
ESR1/SP4 — VEZF1 AR EGR2/ZNF74...
ZNF740 — CieF — o~ — CTCF
ZNF684 — EGR2/KMT2A... — EGR2/KMT2A...
NR2C1/RARA... — T ZNF460/ZNF...
RARG - AR
HIC1/RARA/... — ~—___ PPARD/THRB
PPARD/THRB sjate
ZBTB12
ZBTB14
ESR1
PAX6

Attention score
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Predicting AS activity from just nucleotide sequence (Attention)

Motif count

chr19:13234712

150 -

100 -

50 1

-75

8

Average attention score

1 — crcr I
0] — POLR2A
’ RNA-seq
“ (control)
0.1 1
1
: + :
-25 0 +25
Motif enrichments
surrounding CTCF AS SNVs
CTCF
0.010 A
i — AS
/J\\if
0.005 A 1
1
1
0.000 1 !
SP1

0.040 1

}

0.020 1

0,000,

-75

+75

O ==

75

Attention score
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Predicting AS activity from just nucleotide sequence (Attention)

Motif count

Both the motif centered at the SNV position & the surrounding sequence

150 A

100 -

50 A

chr19:13234712

_~ |

75 0

75

CACGGGAAAAGAAGGATAAGAGCACATCTGGCCACCCCCACACCAGAAAAGGAGGAGGAGGGCACGCCCCCTATCGGAAGAGAAGGCCGGCACGTCCCCTACCGGAAGAGAAGGGCACGCCCCCTACCGGAAAAGAAGGGTGAGGGCGCG

motifs of other TFs are relevant for AS behavior

For instance, a mutated TF-binding site could be stabilized by other
cofactors & show no AS behavior

Similar to the legs of the Lunar Module:
If one doesn’t work, the three other legs can still anchor properly

‘1' k

F-’ '
l. ll'/

Attention score
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Part 1: Multi-scale Modelling for Brain Disorders-
(Representing Molecular & Cellular
Networks in a DL Framework)

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

Part 2: Measuring Genomic Privacy Risk from a

Few, Noisy SNPs
(Understanding Information Leakage in
terms of Constraints on Haplotype

Trajectories)

- The Dilemma of Genomic Privacy: The
genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

- 30 SNPs from "environmental" coffee cup
sample sufficient for ID

- Based on finding most likely haplotype
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 3: Variant Impact for Precision Medicine
(Learning Distributed Sequence Patterns
via Transformer Attention)

- Need for variant catalogs & interpretation
resources

EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid
genomes of 4 individuals

- Differential mapping to haplotypes
Development of AS Catalog

- >1M allele-specific events, over all samples
from jt. calling

- Useful biological interpretation: chrX, SVs,
Igf2-H19

- Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

- Relating AS events to tissue-specificity &
conservation

Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs

- Model can successfully predict if a SNV will be
AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors




Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for Al in Biomedicine

Part 1: Multi-scale Modelling for Brain Disorders*

- PsychENCODE consortium, leveraging high
heritability of psychiatric diseases with
functional genomics

* Uniform Processing of Single Cell Data for 388
Brains

- 28 cell types, merging BICCN with a PFC-
focused study

- >500K scCREs

¢ Creating Cellular Networks

- 1.4 M scQTLs from GTEx methods

- Building cell-type-specific regulatory networks
from scQTLs, scCREs & single-cell co-
expression

- Cell-to-cell communication networks, with
changes in disease

* Integrative Models Using These Networks

- Embedding regulatory networks & cell-to-cell
communication networks in a deep-learning
model to predict disease from genotype

- Using this to prioritize specific pathways &
genes.

- Modelling perturbations & using these to
suggest pot. drug targets

» Part 3: Variant Impact for Precision Medicine

Need for variant catalogs & interpretation
resources

The Dilemma of Genomic Privacy: The « EN-TEx: a Resource for Variant Interpretation

genome as fundamental, inherited info that's
private v. need for large-scale sharing &
mining for med. research

30 SNPs from "environmental" coffee cup
sample sufficient for ID

Based on finding most likely haplotype
"trajectories" in a genome DB

Single trajectory for a unique match for an
ensemble of equivalent ones for near match
Calculating a PRS score over an ensemble

>1500 functional experiments with diploid
genomes of 4 individuals

Differential mapping to haplotypes

+ Development of AS Catalog

>1M allele-specific events, over all samples
from jt. calling

Useful biological interpretation: chrX, SVs,
Igf2-H19

Association of AS events & eQTL/GWAS
variants; provides a source of variant
interpretation

Relating AS events to tissue-specificity &
conservation

*  Transformer model to Predict AS Variants

Identification of sensitive TF binding motifs

Model can successfully predict if a SNV will be

AS purely from sequence; however, it requires
extended context (~150 bp) around SNV

Interpretation in terms of anchoring co-factors
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Info about content in this slide pack

* General PERMISSIONS

* This Presentation is copyright Mark Gerstein,
Yale University, 2019.

* Please read permissions statement at

www.gersteinlab.org/misc/permissions.html .

* Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

* Paper references in the talk were mostly from Papers.GersteinLab.org.

* PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images
in this presentation see http://streams.gerstein.info .

* In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily
queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt



