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Learning meaningful representations 
from large, complex biological data
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Representation learning
• “An AI must fundamentally understand the world around us, and we argue 

that this can only be achieved if it can learn to identify and disentangle the 
underlying explanatory factors hidden in the observed milieu of low-
level sensory data.”
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Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new 
perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.
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https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html
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Representation learning

https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html
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Representation learning

Kopf, Andreas, and Manfred Claassen. "Latent representation learning in biology and 
translational medicine." Patterns 2.3 (2021).
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• Particularly well suited to molecular biomedical data because of
• its scale and high-dimensionality
• its difficulty for easy interpretation

• When it comes to scientific data:
• We only have partial knowledge about their internal structures
• Thus, if the learned representations could re-discover some known 

patterns in the data, they could can help us discover more potentially 
meaningful ones.



Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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Many psychiatric conditions are highly heritable in comparison to 
other disorders, but their mechanisms are unknown
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Schizophrenia 79% 24% 35396580 320 (C4A)

Bipolar disorder 60-85% 16-19% 34002096 414 -

Alzheimer's disease 60-80% 3% 34493870 1,127 APOE, Tau

Hypertension 30% 18% 38689001 1,029 Renin–angiotensin–aldosterone

Heart disease 50-60% 6% 26343387 184 Atherosclerosis, VCAM-1

Stroke 32% 17%-21% 33773637 262
Reactive oxygen species (ROS), 

Ischemia

Type-2 diabetes 26% 20% 30054458 659 Insulin resistance

Breast Cancer 31% 22% 38741014 40 BRCA, PTEN

Molecular MechanismsDisease Heritability
SNP-based 

Heritability
PMID

Sample 

Size 

(1000s)
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PMID 19571808 19571811 19571809 21926974 22037552 22037555 23974872 25056061 28991256 29483656 31740837 35396580

Replication-Control 21093 15490 16424 21397 5603 4539 19762 66236 5770 154224 0 142626

Replication-Case 10282 4686 4327 8442 4027 4383 7413 1513 4384 5662 0 1979

Discovery-Control 13498 3587 2653 12462 1599 6468 18310 45604 83493 64643 78818 94015

Discovery-Case 2663 3322 2681 9394 746 3750 13833 34241 50874 40675 56418 67390

loci 3 1 1 7 2 2 22 108 113 145 176 287

SNP-based heritability 0.24

Citation Figures adopted and updated from Sophie E. Legge et al. Psychological Medicine. 2021; Vassily Trubetskoy et al. Nature. 2022

2022. 287 loci 
SCZ

Great Progress in Finding Variants Related to Brain Diseases: 
The history of reported schizophrenia GWAS

https://www.cambridge.org/core/search%3Ffilters%255BauthorTerms%255D=Sophie%2520E.%2520Legge&eventCode=SE-AU
https://www.cambridge.org/core/journals/psychological-medicine
https://www.nature.com/articles/s41586-022-04434-5
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Assessing gene regulation to understand psychiatric disorders

Figure derived from Orphanides and Reinberg, Cell 2002

Genotype
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Molecular
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Macrophenotype
(Psychiatric
Disorders)

Addressing the fact that molecular mechanisms are not known for most psychiatric disorders

Whole Genome Sequencing 
SNP Microarrays

3D Genome

Chromatin
regulation
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RNA-seq
Single-cell RNA-seq

Translational
regulation

Protein
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Mass-spectrometry
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The PsychENCODE Consortium: Focusing on the PFC 

200 researchers at 40 institutions 

Main goal: Understand the genetic, genomic and epigenomic etiologies of schizophrenia, 
bipolar disorder, autism spectrum disorder, and other neuropsychiatric disorders

Elert, E. Nature 508, S2–S3 (2014)

Deep dive into Prefrontal 
Cortex due to its association 
with many psychiatric disorders

The prefrontal cortex (PFC) not only governs executive 
functions, but is also responsible for:

• behavioral regulation and mental health
• development and plasticity
• interplay with neurotransmitter systems

lectures.gersteinlab.org
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Advantages of  single-cell resolution  in the brain

Bulk Datasets Single-cell Datasets Spatial Analysis Cell-to-cell Connectivity

Images generated using the DeepAI Image Generator tool

lectures.gersteinlab.org



Worm
Genome modENCODE

ENCODE
Pilot

ENCODE
Production

Comparative
ENCODE

1000 Genomes
Pilot

1000 Genomes
Production

GTEx

The Human
Genome
Project PsychENCODE

BICCN HuBMAP

TCGA

How 
PsychENCODE

fits into the 
history of 
genome 

annotation

14
lectures.gersteinlab.org
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Harmonized cell typing 
for neuronal and non-
neuronal types

Single-cell data for 388 individuals (snRNA-seq, genotypes, ~60 
snATAC-seq) – one of the largest single-cell collections in the 
human brain

Integrated study derived from 12 cohorts (PEC, AMP-AD, & other 
studies) for population and cross-disorder comparisons

Integrating multi-omics data for 388 adult brains
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scCREs show specific enrichment for TF motifs and GWAS signals 

Cell-type-
specific TF motif 
patterns -
major brain cell types 
employ distinct groups of 
TFs. 

~560,000 single-cell cis-regulatory elements 
(scCREs) from ATAC peaks, more enriched for 
brain traits in GWAS than bulk cCREs

[Emani et al. (‘24) Science]

LDSC Enrichment
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lectures.gersteinlab.org
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Validation using 
single-cell ASE
Consistency betw. scQTL effect 
sizes and ALT haplotype fractions

Dilution Effect 
implies many 
scQTLs will not be 
seen in bulk
For scQTLs that overlap with 
bulk eQTLs, scQTL effect is 
larger & diluted out in bulk 20

Cell type-specific eQTLs (scQTLs)

Core set of 1.4M scQTLs
based on standard GTEx QTL scheme

Overall, ~85K scQTLs & ~690 significant eGenes per cell type

~53% scQTLs cell-type-specific

Bayesian methods sharing information between cell types can 
identify more scQTLs in rarer cell types [Emani et al. (‘24) Science]
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Matrix gymnastics: Cross-study data integration, 
filtering, and matrix synchronization

> Filtering:
- Genes
- Nuclei
- Variants
- Individuals

> Matrix synchronization

Slowly explore ‘decision space’ -- details re. pre-
processing (e.g., expr normalization, etc)

- log TPM-normalization?
- log CPM-normalization?
- sc-transform normalization?
- TMM-normalization?
- Thresholds for # min nuclei & samples
- Stage to enforce MAF filters

Batch effects (mult. cohorts): Optimizing calling setups 
(ex: selecting covariates and numbers of PCs to include)

‘Semi-blind’ validation: Devising and performing quality checks and 
‘validation’ without gold-standard reference dataset for comparisons

# expr PCs

# 
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Sst__Sst_Chodl
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Data sparsity and limited statistical power in snRNA-seq contexts

Challenges in 
Calling Cell 

type-specific 
eQTLs

(scQTLs)
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gene 17,821

gene k

gene 30

gene 12

gene 56

gene ~20K

gene k

gene 3

gene 2

gene 1

gene ~20K

gene k

gene 3

gene 2

gene 1

gene k

gene 3

gene 2

gene 1

Step 1: Identify the most significant eSNP 
per gene, and then correct p-values for 
multiple testing within each gene to 
derive adjusted gene-level p-values

Genes are ordered by
descending significance

Step 2: Multiple testing correction (BH 
to estimate FDR) is applied to the set 
of all ~20K adjusted gene-level p-
values to yield the significant eGenes
(FDR 0.05)

Step 3: Pull in all significant eSNPs
associated with each significant eGene 
by using the scheme adopted by GTEx

gene ~20K

P-values

co
un

t
Adapted from

 D. Robinson (w
eb post)

pnomimanl_thresh
(eGene) =  F−1(pt)

F(pnomimanl_thresh
(eGene))  = pt

Multi-step (hierarchical) scheme to identify significant eGenes & their associated eSNPs
(GTEx compatible approach)
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TFs show differential usage (i.e. out-hubs, bottlenecks) across cell-type GRNs 

Constructing cell-type-specific gene regulatory networks
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TF expression explains 52% of 
variation in target gene expression
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726-edge network 
(CellChat)

Disease-specific alterations in cell-to-cell communication
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Outgoing Communication Pattern Clustering Differential Analysis of 
WNT Pathway

Disease-specific alterations in cell-to-cell communication

Large-scale changes in cell-cell communication patterns seen in individuals with neuropsychiatric disorders

[Emani et al. (‘24) Science]Le
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Input: 
Genotypes

Bulk GRNs

Single-nucleus 
GRNs

Modality-specific 
latent layers

General latent 
layers 

Trait Prediction

27

Linear Network of Cell-Type Phenotypes (LNCTP) model framework
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-Prediction of single-cell expression in samples 
based only on genotypes

-Improves prediction of cell-type expression 
variance compared with other methods (i.e.
baseline or bulk RNA models, PRS)

28

Predicted Expression
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Results from LNCTP allow the 
association of traits with genes 
in a cell-type-specific manner

By tracing the influence of genes through 
visible and latent layers, cell-type-
specific effects towards disease 
can be identified.

~250 total gene + cell type pairs

Salient pathways from genes through cell types to traits

29

Using LNCTP to link genes, cell types, and phenotypes 

[Emani et al. (‘24) Science]
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LINGO2 links to BPD
through Inhibitory and 
Excitatory Neurons

MEF2A links to BPD
through Microglia, Inhibitory 
and Excitatory Neurons

30

LNCTP examples: Prioritized cell types for BPD genes

Results from LNCTP allow the 
association of traits with genes 
in a cell-type-specific manner
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Highlights in SCZ include TCF4, RORA, & 
Micro-Exc linkage in cell-to-cell network

31

LNCTP examples: Prioritized cell types for SCZ genes

Results from LNCTP allow the 
association of traits with genes 
in a cell-type-specific manner

[Emani et al. (‘24) Science]
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Comparison of LNCTP 
predicted network to Glu 
neuron CRISPR experiments*

32

*Tian, R., Abarientos, A., Hong, J. et al. Nat Neurosci
24, 1020–1034 (2021).
[Emani et al. (‘24) Science]
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Key 
priori-
tized 

genes

Drug 
targets

Back-
ground 
genes

1. Choose 
genes to perturb

2. Fix one gene to 
high/low value

3. Re-impute 
all other genes

Perturbation direction matching

Comparing LNCTP and CRISPR perturbations
● Perturbations in excitatory neuron GRN
● Upper decile of genes according to LNCTP z-score changes
● Perturbation directions are matched or unmatched 

○ Unmatched means LNCTP z-score changes correlate 
with CRISPR fold-change vectors for all genes except 
the perturbed gene
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Matched Unmatched



LNCTP model: Perturbation Analysis 

[Emani et al. (‘24) Science]
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LNCTP model: Perturbation Analysis 
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LNCTP predicts effects 
of perturbations on 
case/control status

[Emani et al. (‘24) Science]
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LNCTP model: Clue.io Analysis 

35
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• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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The Dilemma

• Sharing helps speed research
• Large-scale mining of this information is important 

for medical research
• Statistical power
• Privacy is cumbersome, particularly for big data

[Economist, 15 Aug ‘15]

The Other Side of the Coin 
for Genomics: Why we should share

[Yale Law Roundtable (‘10). Comp. in Sci. & Eng. 12:8; D Greenbaum & M Gerstein (‘09). Am. J. Bioethics; D 
Greenbaum & M Gerstein (‘10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB (‘11)]

• The individual (harmed?) v the 
collective (benefits)

- But do sick patients care 
about their privacy?

• How to balance risks v rewards 
– Quantification

37



Privacy: Does Genomics has similar "Big 
Data" Dilemma as in the Rest of 
Society?

• We confront privacy risks every day we access the 
internet (e.g., social media, e-commerce).

• Sharing & "peer-production" is central to success 
of many new ventures, with analogous risks to 
genomics

• EG web search: Large-scale mining essential

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct), D Greenbaum & M Gerstein (’08). Am J. Bioethics; D 
Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; 
Photos from NY Times, it.wisc.edu]

Genetic Exceptionalism : 
The Genome is very fundamental data, potentially very 
revealing about one’s identity & characteristics

Personal Genomic info. essentially meaningless currently 
but will it be in 20 yrs? 50 yrs?

Genomic sequence very revealing about one’s children. 
Is true consent possible?

Once put on the web it can’t be taken back 
Ethically challenged history of genetics 

Ownership of the data & what consent means (Hela)
Could your genetic data give rise to a product line? 

38
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Risk from environmental samples: sparse and noisy genotypes
• Swabs of objects are easy to obtain

• How much information is contained in such DNA samples?

• Created a population-genetics-inspired approach* to quantify the risk: 
PLIGHT = Privacy Leakage through Inference across Genotypic HMM Trajectories

• Found risk of identification is high even with tens of noisy SNPs

• Identified a way of sanitizing data before publication

39

*Emani, P.S.;  Geradi, M.N.; Gürsoy, G.; Grasty, M.R.; Miranker, A.; Gerstein, M.B. ``Assessing and mitigating privacy risks of 
sparse, noisy genotypes by local alignment to haplotype databases", Genome Research  (2023), Vol. 33, Iss. 12, Pgs. 2156-2173

lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]



Quantifying identifying information in the limit of  small SNP sets

Homozygous Reference
Homozygous Alternate 

...

Heterozygous 

Number of Observed Genotypes

Unobserved

N>=30

...

N=10

...

N=5

Ground-truth
individual

Unlikely
Haplotype

Pairs

Single Haplotype Pair

Space of Reference Haplotypes

Equally
likely 

Haplotype
Pairs

Direction of decreasing SNP information

and increasing number of equally likely hits 

lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]40



The Li & Stephens HMM: Effect of  mutation/genotyping error 
(Li, N.; Stephens, M. Genetics 2003, 165, 2213–2233. )

l = 1 l = 2 l = 3 l = L - 1 l = L
...Observed

Genotype Gi,l
2 0 1 0 1

...Maternal
Haplotype Zi,l

(1) 1 0 0 1 0

Visible Layer

Hidden Layer

...Paternal
Haplotype Zi,l

(2) 1 0 1 0 1

Mutation/Genotyping
error

HMM

When identifying individuals, can include the effects of genotyping error/noise using a population genetics approach:

! = 0.05  #  
0 1 2 

 0 0.9025 0.095 0.0025 
$(") + $($) 1 0.0475 0.905 0.0475 

  2 0.0025 0.095 0.9025 
 

Probability of observing a genotype G of 0, conditional on the sum of the haplotypes being 1 

Error rate
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The Li & Stephens HMM: Effect of  ancestral recombination 
(Li, N.; Stephens, M. Genetics 2003, 165, 2213–2233. )
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The Li & Stephens HMM 
(Li, N.; Stephens, M. Genetics 2003, 165, 2213–2233. )

Addresses: What is the probability of observing a set of genotypes, based on underlying panel of 
haplotypes?
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𝑃 𝐺! 𝐻

= %
"!
" ,"#

$

𝑃 𝐺! 𝑍$
% , 𝑍&

' . 𝑃 𝑍$
% , 𝑍&

' 𝐻 Encodes recombination

Encodes mutations or
genotyping error

𝑍$
( = 𝑍$ ) ,)

(
)*%

+
= Set of all possible haplotypes at the observed loci 𝑙𝐻 = Set of all reference phased genotypes

lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]



PLIGHT
Viterbi algorithm for most-likely path

1. Search through the space of haplotype pairs (total dimension = N✕N) to match the diploid genotypes

2. Each of the two haplotypes can independently recombine with other haplotypes
3. Allow for mutations/genotyping error

4. Result: Piecewise matches of reference haplotypes to observed genotype

44 lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]



PLIGHT
Viterbi algorithm for all equally likely “best-fit” paths

For very sparse data, several paths may be equally likely.
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argmax
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$ ∈ 𝐒𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞 𝐡𝐚𝐩𝐥𝐨𝐭𝐲𝐩𝐞𝐬
𝑃 𝐺! 𝑍$

% , 𝑍&
' . 𝑃 𝑍$

% , 𝑍&
' 𝐻

We term these paths 
‘Genotypic Trajectories’:
to signify the sequential 
exploration of haplotype 
space.

The number of independent
trajectories in any region
gives a sense of genotypic
‘entropy’

lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]



Privacy risk of  partial/regional genotype matching

Pool regional 
genetic 

information
across haplotype

matches

Example:
Calculate Polygenic Risk Score (PRS) 

across all unique haplotypes
in Segment 1

Haplotype 87
Haplotype 809
Haplotype 1
Haplotype 4
Haplotype 12
Haplotype 46
Haplotype 235

Known Disease Risk Alleles
with Different Statistical Associations

PRS

}

Is the distribution of  best-fit haplotype PRSs
 statistically significant? 

Population 
Distribution 

of  PRSs 

1&4

12&46

87&809

46&235

Segment 1

lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.] 46



A few noisy SNPs can pose privacy risks
• Identified individuals with as little as 10 SNPs; robust to modest noise 
• Found 1st-degree relatives (parents, siblings, children) with ~20-30 SNPs
• Environmental (saliva) swab SNPs still allow identification (with ~30 SNPs), in spite of

noise
• Recommended sanitizing SNPs that specify identity with high degree of certainty
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Chromosome 1 Chromosome 2
lectures.gersteinlab.org - [Emani et al. (‘24) Gen. Res.]47



Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few 
high-impact variants are associated with disease 

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,  
But one wants to find key ”functional” variant amongst many in LD 

CAN YOU FIND THE PANDA?



5
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few 
high-impact variants are associated with disease 

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,  
But one wants to find key ”functional” variant amongst many in LD 

Thus: Need to find & prioritize high impact variants. 
Particularly hard for non-coding regions.

CAN YOU FIND THE PANDA?
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Basic Science è Medicine: Creation of 
Variant Catalogs of healthy & sick people 

IN
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IA
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S

Medical Big Data: Promise and Challenges (Lee and Yoon , Kidney Res. Clin. Pract., 2017) 
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AS
SI
CS

Resources for 
Variant Interpretation

More direct & clear 
interpretation through 

molecular endophenotypes 
(gene expression) 

rather than 
"macro phenotype" 
(disease diagnosis) 



Gerstein Lab

Learning the DNA regulatory grammar
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Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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The EN-TEx resource of multi-tissue functional genomics data

> 1500 experiments, 
publicly available at XXX
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~1500 experiments
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Construction of personal diploid genomes

• long-read (PacBio, 10x) and short-read (Illumina) DNA-seq
• >20K long structural variants (SVs) per person

• We integrate WGBS data to call imprinted regions and phase 
maternal and paternal haplotypes
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How to map functional genomic data
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Reference
Annotation

Personal
Annotation

RNA-seq

Map to diploid genome

Map to reference genome
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Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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Personal genomes allow to study a broader set of SNVs, including individual-specific SNVs

Allele-Balanced Locus

Allele-Imbalanced or Allele-Specific (AS) Locus

Personal genomes and the detection of allele-specific events
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ACTTTGATAGCGTCAATG
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC
TTGACAGCGTCAATGCAC
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC
TAGCGTCAATGCACGTCG

Read Stack 
(e.g., from RNA- or ChIP-seq) 
has necessary info. to 
determine correct haplotype 
to map to 
but tricky mapping issues must 
be resolved
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Personal genomes and the detection of allele-specific events
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Merge reads within an element (genes, cCREs)
Perform beta binomial test

Identify AS elements (genes, cCREs)

Identify heterozygous AS SNVs
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Perform beta binomial test

Identify accessible SNVs

AlleleSeq pipeline
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H3K27ac, Ind. #1, Spleen
has ~2,600 AS SNVs 

60

>300X more precise localization of reg. elements (cCREs):
~0.9M total => ~117K active in spleen => ~2.9K AS in spleen

~4X incr.
in eQTL

enrichment

~1.3 M
SNVs
total

Similar 
results for 
GWAS
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The classic example of H19 and IGF2 allele-specific activity 

61

Recapitulating a Classic Story                            AS Hi-C analysis     ==>    Different M & P Chromatin
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Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 



Le
ct

ur
es

.g
er

st
ei

nl
ab

.o
rg

–
R

oz
ow

sk
y

et
 a

l. 
C

el
l(

‘2
3)

Relating AS SNVs and TF binding motifs

Genome sequence

AS SNV non-AS SNV
(for a given assay)

There are many SNVs in the genome
• Some can impact activity (AS SNVs)
• Some don’t have any impact (non-AS SNVs)

We can identify TFs with motifs more sensitive to 
mutations, showing enrichment in AS events

TF binding
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Part 3 - Results

Cross-referencing AS SNVs and TF binding motifs identified AS “sensitive” TFs
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DLX5
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Cross-referencing AS SNVs and TF binding motifs identified AS “sensitive” TFs
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Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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Predicting AS activity just from nucleotide sequence (Simple)

● Each TF has a specific sequence that defines its motif. 
Can we predict AS events from those overlapping TF sequence motifs? 

● EX: Predicting CTCF AS activity from its motif

● Intuition: Might think AS variant “knocking-out” a TF motif 
would give rise to differential AS binding

CCTAG

CCGAG

Simple logistic 
regression
models based on
overlapping & 
nearby motifs

67
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Predicting AS activity just from nucleotide sequence (Deep Learning)

Model taking into account a larger 250-bp window around the SNV yields better predictions 

68



Gerstein Lab

Contextual language model

69Vig, Jesse. "BertViz: A tool for visualizing multihead self-attention in the BERT 
model." ICLR workshop: Debugging machine learning models. Vol. 23. 2019.

• Attention
• How “relevant” each part of the

sentence is to the rest
• 𝐿×𝐿 attention matrix for every 

word against every word 
• Calculated using the whole 

sentence



Gerstein Lab

Contextual language model

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 70

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Gerstein Lab

Transformer encoder & BERT

71
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language 
understanding." arXiv preprint arXiv:1810.04805 (2018).

Attention 
layers



Gerstein Lab

Transformer encoder & BERT

• DNABERT

72Ji, Yanrong, et al. "DNABERT: pre-trained Bidirectional Encoder Representations from Transformers 
model for DNA-language in genome." Bioinformatics 37.15 (2021): 2112-2120.



Gerstein Lab

Allele specificity prediction

• Trained on the aggregated AS set of donor 3
• ±128bp sequence context
• Positive vs negative: AS vs non-AS heterozygous variants

73

Transformer 
Encoders

Contextual 
Embeddings
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representation
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Gerstein Lab

Sequence embedding
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Gerstein Lab

Allele specificity prediction
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Predicting AS activity just from nucleotide sequence (Attention)

76

Both the TF motif centered at the SNV position and the surrounding 
sequence are relevant for predicting AS behavior

• e.g: a mutated TF-binding site could be stabilized by other (redundant) 
binding sites or by other cofactors and show no AS behavior
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Predicting AS activity from just nucleotide sequence (Attention)
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Predicting AS activity from just nucleotide sequence (Attention)

78

Both the motif centered at the SNV position & the surrounding sequence 
motifs of other TFs are relevant for AS behavior

• For instance, a mutated TF-binding site could be stabilized by other 
cofactors & show no AS behavior

• Similar to the legs of the Lunar Module: 
If one doesn’t work, the three other legs can still anchor properly



Developing Computational Representations of Disease-Relevant Molecules: 3 Cases Studies for AI in Biomedicine

• Part 1: Multi-scale Modelling for Brain Disorders
(Representing Molecular & Cellular 
Networks in a DL Framework)
- PsychENCODE consortium, leveraging high 

heritability of psychiatric diseases with 
functional genomics

• Uniform Processing of Single Cell Data for 388 
Brains
- 28 cell types, merging BICCN with a PFC-

focused study
- >500K scCREs

• Creating Cellular Networks
- 1.4 M scQTLs from GTEx methods
- Building cell-type-specific regulatory networks 

from scQTLs, scCREs & single-cell co-
expression 

- Cell-to-cell communication networks, with 
changes in disease

• Integrative Models Using These Networks
- Embedding regulatory networks & cell-to-cell 

communication networks in a deep-learning 
model to predict disease from genotype 

- Using this to prioritize specific pathways & 
genes. 

- Modelling perturbations & using these to 
suggest pot. drug targets 

• Part 2: Measuring Genomic Privacy Risk from a 
Few, Noisy SNPs
(Understanding Information Leakage in 
terms of Constraints on Haplotype 
Trajectories)
- The Dilemma of Genomic Privacy: The 

genome as fundamental, inherited info that’s 
private v. need for large-scale sharing & 
mining for med. research

- 30 SNPs from "environmental" coffee cup 
sample sufficient for ID

- Based on finding most likely haplotype 
"trajectories" in a genome DB

- Single trajectory for a unique match for an 
ensemble of equivalent ones for near match

- Calculating a PRS score over an ensemble

• Part 3: Variant Impact for Precision Medicine 
(Learning Distributed Sequence Patterns 
via Transformer Attention)
- Need for variant catalogs & interpretation 

resources
• EN-TEx: a Resource for Variant Interpretation

- >1500 functional experiments with diploid 
genomes of 4 individuals

- Differential mapping to haplotypes
• Development of AS Catalog

- >1M allele-specific events, over all samples 
from jt. calling 

- Useful biological interpretation: chrX, SVs, 
Igf2-H19

- Association of AS events & eQTL/GWAS 
variants; provides a source of variant 
interpretation

- Relating AS events to tissue-specificity & 
conservation

• Transformer model to Predict AS Variants
- Identification of sensitive TF binding motifs
- Model can successfully predict if a SNV will be 

AS purely from sequence; however, it requires 
extended context (~150 bp) around SNV

- Interpretation in terms of anchoring co-factors 
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Info about content in this slide pack

• General PERMISSIONS
• This Presentation is copyright Mark Gerstein, 

Yale University, 2019. 
• Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
• Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
• Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images 
in this presentation see http://streams.gerstein.info . 

• In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be easily 
queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


