Large Language Models for Biomedicine: from PubMed Search to Gene Set Analysis

Zhiyong Lu, PhD FACMI FIAHSI Senior Investigator, NCBI, NLM, NIH Professor of Computer Science (Adjunct), UIUC

Our research at NLM IRP

Research Areas

AI & Machine Learning, LLMs
Natural Language Processing (NLP)
Medical Image Analysis

Text & Image data

Biomedical Literature

Clinical notes, EHRs

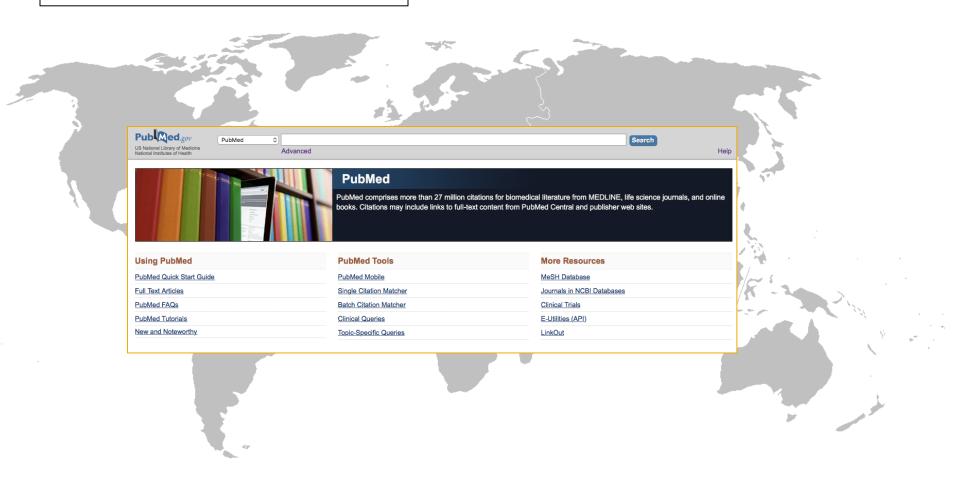
CT, CXR & retinal images

Application areas:

Literature Retrieval (e.g., PubMed Search; LitCovid)
Information Extraction/Curation (e.g., LitVar, PubTator)
AI/LLMs in Healthcare (e.g., diagnosis/prognosis; TrialGPT)

PubMed Daily Usage

- >~36+ million articles
- > 2.5 million users daily
- > ~ 3 million searches
- > 9 million page views



AI/ML in PubMed

- Related articles
- Spell checker
- Query autosuggest
- Semantic query understanding
- Citation sensor
- Author name disambiguation
- Query expansion
- Best Match: Sort by Relevance

Copyright: This is an open access article, free of all

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose. The work is made available under the Creative

copyright, and may be freely reproduced.

Commons CCO public domain dedication.

(factors), the most important being the past usage of an article, publication date, relevance score, and type of article. This new algorithm demonstrates state-of-the-art retrieval performance in benchmarking experiments as well as an improved user experience in real-world

testing (over 20% increase in user click-through rate). Since its deployment in June 2017,

we have observed a significant increase (60%) in PubMed searches with relevance sort

order; it now assists millions of PubMed searches each week. In this work, we hope to

increase the awareness and transparency of this new relevance sort option for PubMed

users, enabling them to retrieve information more effectively.

Unknown pneumonia

2019 nCov infection

Coronavirus 2 syndrome

Novel coronavirus pneumonia

Coronavirus disease 2019

COVID-19

Wuhan coronavirus pneumonia

CoV 19 infection

2019 nCoV

SARS-CoV-2 associated ADRS

SARS COVID 2

Novel coronavirus

SARS-CoV-2

New Cov 19

HCoV-019

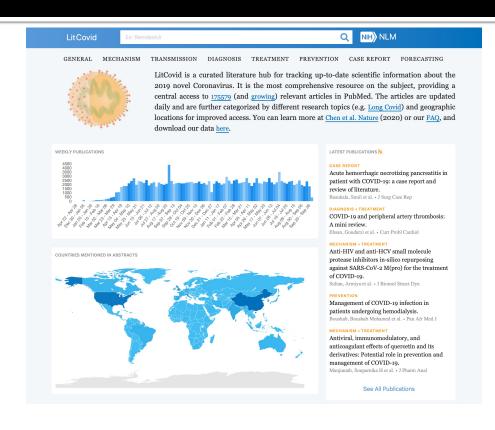
SC₂

WH-human 1' coronavirus

New CoV

Severe acute respiratory syndrome coronavirus 2

LitCovid: Research matters (est. 02/2020)



Chen et al., Keep up with the latest coronavirus research.

Nature. 2020, NAR 2021, 2023

"First thing in the morning, right after brushing your teeth, you click on LitCovid"

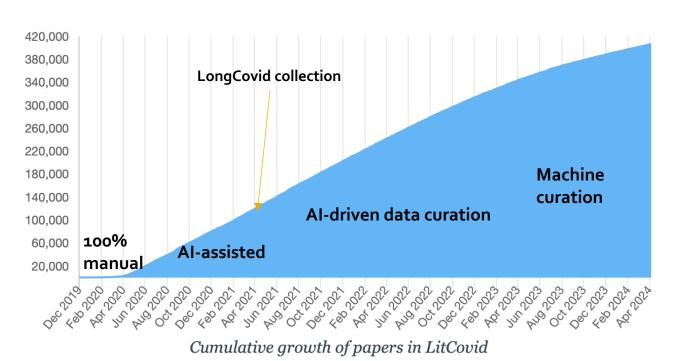
Qingyu Chen, postdoc Assistant Professor, Yale

"My favorite site for following the latest <u>#covid19</u> literature is NLM LitCovid. Organized, comprehensive and user friendly."

"I just wanted to say thank you for the LitCovid tool! It is an amazing resource." "I just wanted to thank you for organising this informative information. I am incredibly grateful for your efforts."

"Thank you for putting together such a wonderful resource."

AI + Curator > Curator

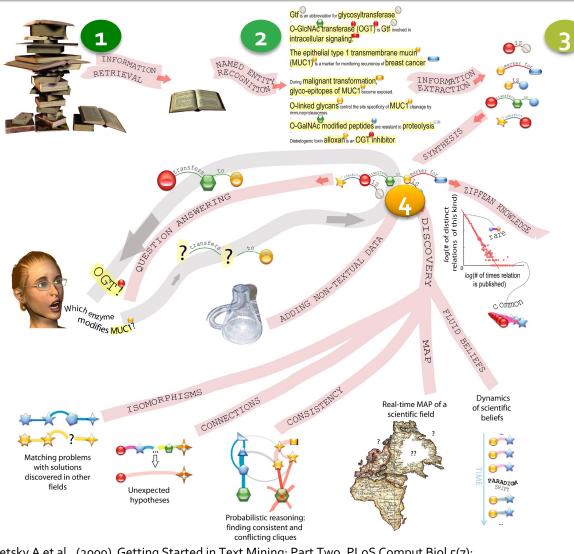


Antarctica: 2.1k

Total usage: Over 60 million hits

Lilly Xu, 2022 summer intern AMIA 2022 High School Scholar Harvard, Class of 2027

Information Extraction for Discovery

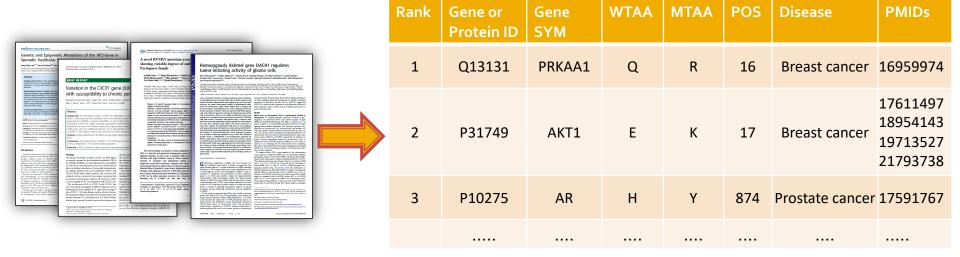


Extracting gene-disease-variant relations from free text

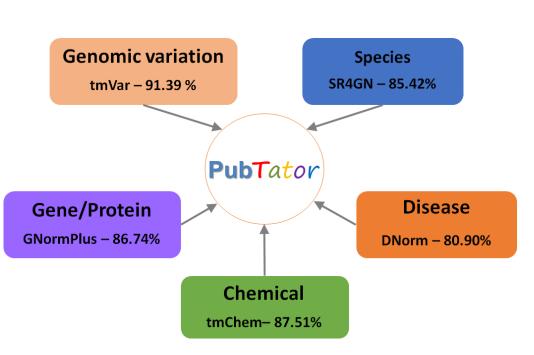
Variant Disease Gene J Alzheimers Dis. 2012;32(2)

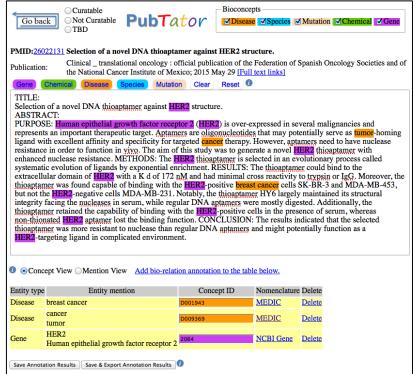
Highly pathogenic Alzheimer's disease presenilin 1 P117R mutation causes a specific increase in p53 and p21 protein levels and cell cycle dysregulation in human lymphocytes.

Bialopiotrowicz E1, Szybinska A, Kuzniewska B, Buizza L, Uberti D, Kuznicki J, Wojda U.



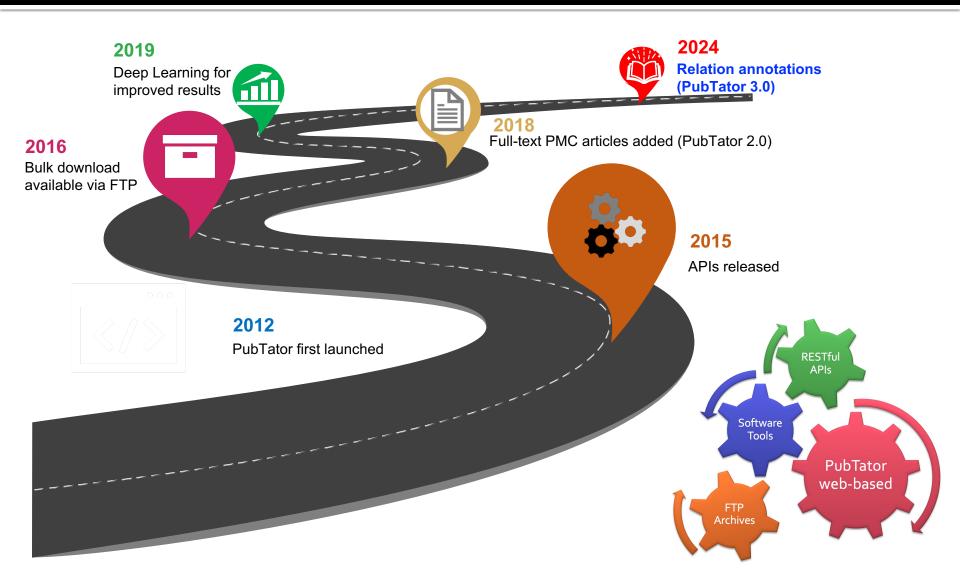
PubTator (est. 2012): integrating textmined results at PubMed scale





Wei, Kao, & Lu: PubTator: a Web-based text-mining tool for assisting biocuration, Nucleic Acids Research, 2013

PubTator milestones



PubTator 3.0: an Al-powered literature resource for unlocking biomedical knowledge

Chih-Hsuan Wei ^{⊚†}, Alexis Allot ^{⊚†}, Po-Ting Lai [⊚], Robert Leaman [©], Shubo Tian [©], Ling Luo [©], Qiao Jin [©], Zhizheng Wang [©], Qingyu Chen [©] and Zhiyong Lu [©]*

National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Rethesda, MD 20894, USA

*To whom correspondence should be addressed. Tel: +1 301 594 7089; Email: zhiyong.lu@nih.gov †The first two authors should be regarded as Joint First Authors.

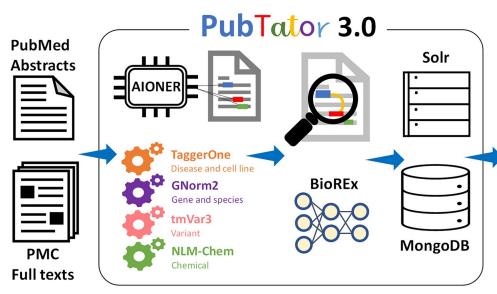
Present addresses:

Alexis Allot, The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec HSA 2B4, Canada. Ling Luo, School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China. Gingyu Chen, Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510, USA.

Abstract

PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic varients, diseases and cheales. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatCPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expedding research and unlocking valuable insights for scientific discovery.

Staff Scientists: C. Wei, R. Leaman



1. Question Answering

Improving the factuality and verifiability of ChatGPT

2. Knowledge Discovery

Discovering the potential relationships, (e.g., protein functions)

3. Supporting other text mining projects

Supporting programmatic access via PubTator API

4. Target prioritization

Prioritizing candidate genes, gene-phenotype associations, and genetic underpinnings of disease comorbidities

5. Biocuration assistance

Supporting biocuration efforts and the creation of NLP benchmarks

API usage: over 1 billion requests

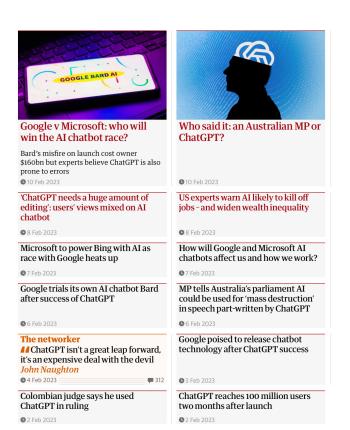
Tracking genetics variants in literature

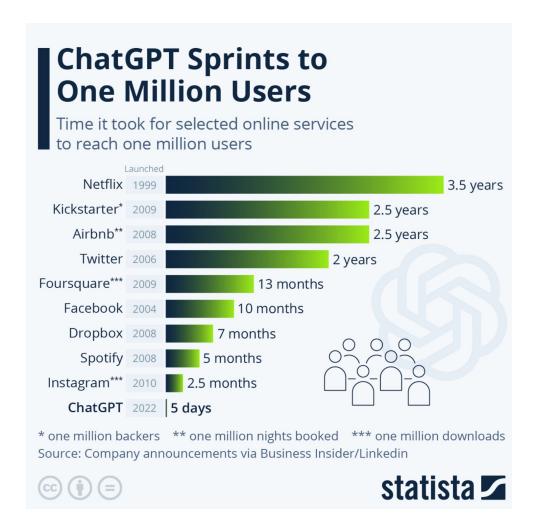
Lon Phan, dbSNP

Melissa Landrum, ClinVar

Heidi Rehm, Broad

ChatGPT: revolution or hype?

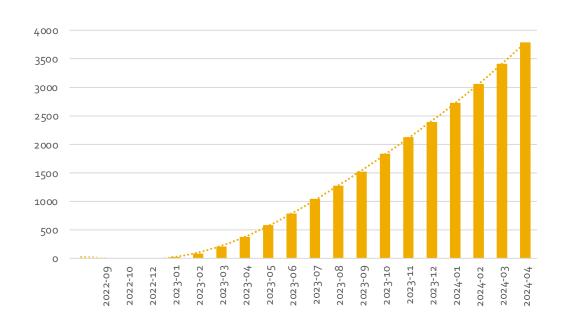




LLMs for Biomedicine

PubMed: "large language models" OR chatgpt

Over 1,000 journals



~170 in ophthalmology

Large language models in medicine.

Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW.

Nat Med. 2023 Aug;29(8):1930-1940. doi: 10.1038/s41591-023-02448-8. Epub 2023 Jul 17.

PMID: 37460753 Review.

Large language models (LLMs) can respond to free-text queries without being specifically trained in the task in question, causing excitement and concern about their use in healthcare settings. ...Here we outline how LLM applications such as ChatGPT are ...

Large language models and their impact in ophthalmology.

Betzler BK, Chen H, Cheng CY, Lee CS, Ning G, Song SJ, Lee AY, Kawasaki R, van Wijngaarden P, Grzybowski A, He M, Li D, Ran Ran A, Ting DSW, Teo K, Ruamviboonsuk P, Sivaprasad S, Chaudhary V, Tadayoni R, Wang X, Cheung CY, Zheng Y, Wang YX, Tham YC, Wong TY. Lancet Digit Health. 2023 Dec;5(12):e917–e924. doi: 10.1016/S2589-7500(23)00201-7. PMID: 38000875 Free article. Review.

The advent of generative artificial intelligence and large language models has ushered in transformative applications within medicine. ...This Viewpoint seeks to stimulate broader discourse on the potential of large language models in ...

Benchmarking **large language models'** performances for myopia care: a comparative analysis of **ChatGPT-**3.5, **ChatGPT-**4.0, and Google Bard.

 $\mbox{Lim ZW, Pushpanathan K, Yew SME, Lai Y, Sun CH, Lam JSH, Chen DZ, Goh JHL, Tan MCJ, Sheng B, Cheng CY, Koh VTC, Tham YC.$

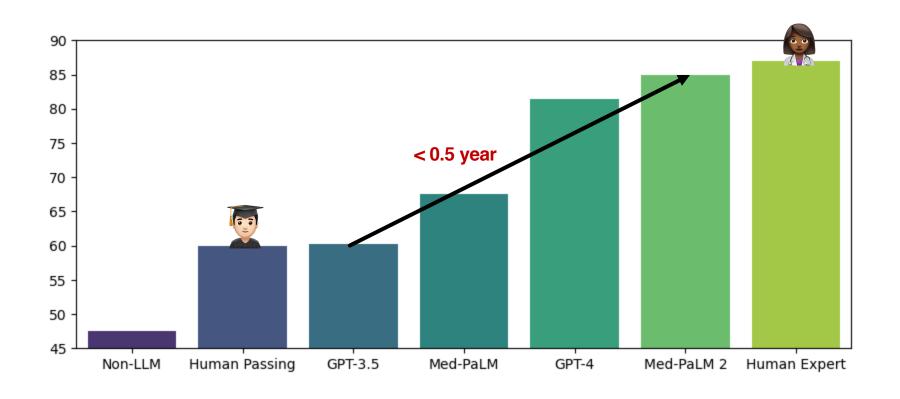
BACKGROUND: Large language models (LLMs) are garnering wide interest due to their humanlike and contextually relevant responses. ...All three LLM-Chatbots showed high mean comprehensiveness scores (Google Bard: 4.35; ChatGPT-4.0: 4.23; ChatGPT- ...

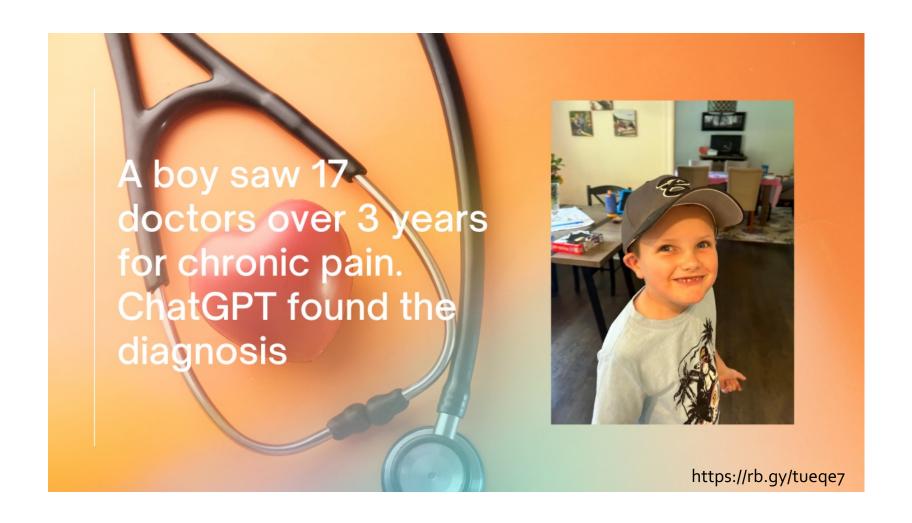
Generative Artificial Intelligence Through **ChatGPT** and Other **Large Language Models** in **Ophthalmology**: Clinical Applications and Challenges.

Tan TF, Thirunavukarasu AJ, Campbell JP, Keane PA, Pasquale LR, Abramoff MD, Kalpathy-Cramer J, Lum F, Kim JE, Baxter SL, Ting DSW.

Ophthalmol Sci. 2023 Sep 9;3(4):100394. doi: 10.1016/j.xops.2023.100394. eCollection 2023

LLMs for Biomedical QA: USMLE Performance





Hallucination in LLMs

Please list the most common symptoms associated with the long-term sequelae of COVID-19. Each symptom should list the source article title and PMID.

fabricated

Sure, here are some of the most common symptoms associated with long-term sequelae of COVID-19, along with their corresponding source article title and PMID:

- 1. Fatigue and Muscle Weakness: "Post-acute COVID-19 syndrome: a case series and multidisciplinary approach to treatment" (PMID: 33571309)
- Shortness of Breath: "Symptomatic Outcomes in Young Adults With COVID-19" (PMID: 32936950)
- 3. Joint Pain: "Musculoskeletal symptoms in COVID-19 patients" (PMID: 32767232)
- Chest Pain: "Chest CT Findings in Long-COVID Patients with Dyspnea and Chest Pain" (PMID: 33828099)
- Cognitive Dysfunction: "Neuropsychiatric and Cognitive Sequelae of COVID-19" (PMID: 33402831)
 (truncated response)

Retrieval Augmented Generation

QI

Please list the most common symptoms associated with the long-term sequelae of COVID-19. Each symptom should list the source PMID.

Providing relevant articles to ChatGPT

Retrieval \rightarrow Summarization \rightarrow Verification

Please list the most common symptoms associated with the long-term sequelae of COVID-19. Each symptom should list the source PMID.

5 x [PMID, title, abstract]

{35105985, 36215063, 36631153, 35934007, 36138154}

We will be a still broblems

combination error not a symptom missing citation incorrect citation

Based on the sources provided, some common symptoms associated with the long-term sequelae of COVID-19 include:

- 1. Fatigue and malaise (PMID: 35105985; PMID: 36215063)
- 2. Dyspnea (difficulty breathing) (PMID: 35105985; PMID: 36215063)
- 3. Defects in memory and concentration (PMID: 35105985)
- 4. Cognitive problems (PMID: 36215063; PMID: 35934007)
- 5. Neuropsychiatric syndromes (PMID: 35105985)
- 6. Persistent inflammation (PMID: 35105985) (truncated response)

Jin Q, Leaman R, Lu Z. Retrieve, Summarize, and Verify: How Will ChatGPT Affect Information Seeking from the Medical Literature? JASN, 2023

Our work on medical LLMs

- Evaluating LLMs on medical benchmarks
 - Scientific communications (J Am Soc Nephrol., 2023)
 - BioNLP tasks (nature communications, under revision)
 - Hidden flaws in multi-modal GPT₄V (npj Digital Medicine, under revision)
- Enhancing standard LLMs
 - Retrieval augmented generation (MedRAG, ACL, under review)
 - Tool learning (GeneGPT, bioinformatics, 2024)
 - Incorporating domain knowledge (GeneAgent for gene set analysis)
- Novel applications/Al agents
 - TrialGPT: patient-trial matching (nature communications, under revision)
 - AgentMD: medical risk calculation
- Al Safety
 - Trustworthiness in clinical evidence synthesis (J Biomed Inform, 2024)
 - Bias & fairness (communications medicine, under revision)
 - Adversarial attacks & risks

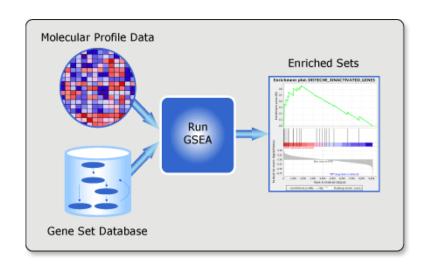
Gene Set Analysis

- Gene sets from high-throughput experiments
- Differentially expressed genes under different conditions
- Data analysis goal: determine the collective functions by a group of genes

Existing GESA methods & their limitations

 Limited to curated knowledge and/or predefined gene sets

No explanation to support predictions



Related works

[Submitted on 21 May 2023 (v1), last revised 25 May 2023 (this version, v2)]

Gene Set Summarization using Large Language Models

Marcin P. Joachimiak, J. Harry Caufield, Nomi L. Harris, Hyeongsik Kim, Christopher J. Mungall

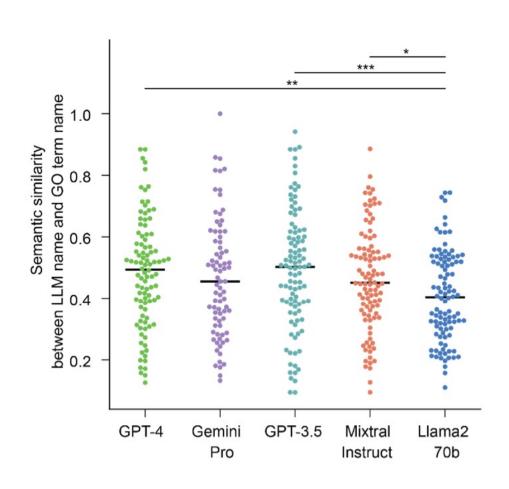
Molecular biologists frequently interpret gene lists derived from high-throughput experiments and computational analysis. This is typically done as a statistical enrichment analysis that measures the over- or under-representation of biological function terms associated with genes or their properties, based on curated assertions from a knowledge base (KB) such as the Gene Ontology (GO). Interpreting gene lists can also be framed as a textual summarization task, enabling the use of Large Language Models (LLMs), potentially utilizing scientific texts directly and avoiding reliance on a KB. We developed SPINDOCTOR (Structured Prompt Interpolation of Natural Language Descriptions of Controlled Terms for Ontology Reporting), a method tl [Submitted on 7 Sep 2023 (v1), last revised 1 Apr 2024 (this version, v2)] summarization as a complement to standard enrichme annotations, (2) ontology-free narrative gene summari function We demonstrate that these methods are able to genera values and often return terms that are not statistically able to recapitulate the most precise and informative t inability to generalize and reason using an ontology. R variations in prompt resulting in radically different terr based methods are unsuitable as a replacement for sta curation of ontological assertions remains necessary.

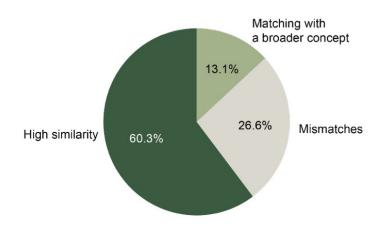
sources of gene functional information: (1) structured Evaluation of large language models for discovery of gene set

term lists for gene sets. However, GPT-based approach Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T. Pillich, Dylan Fong, Kevin Smith, Robin Bachelder, Trey Ideker, Dexter Pratt

> Gene set analysis is a mainstay of functional genomics, but it relies on curated databases of gene functions that are incomplete. Here we evaluate five Large Language Models (LLMs) for their ability to discover the common biological functions represented by a gene set, substantiated by supporting rationale, citations and a confidence assessment. Benchmarking against canonical gene sets from the Gene Ontology, GPT-4 confidently recovered the curated name or a more general concept (73% of cases), while benchmarking against random gene sets correctly yielded zero confidence. Gemini-Pro and Mixtral-Instruct showed ability in naming but were falsely confident for random sets, whereas Llama2-70b had poor performance overall. In gene sets derived from 'omics data, GPT-4 identified novel functions not reported by classical functional enrichment (32% of cases), which independent review indicated were largely verifiable and not hallucinations. The ability to rapidly synthesize common gene functions positions LLMs as valuable 'omics assistants.

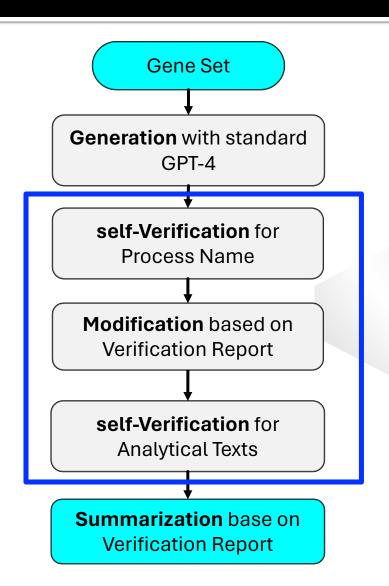
Key results in Hu et al.,

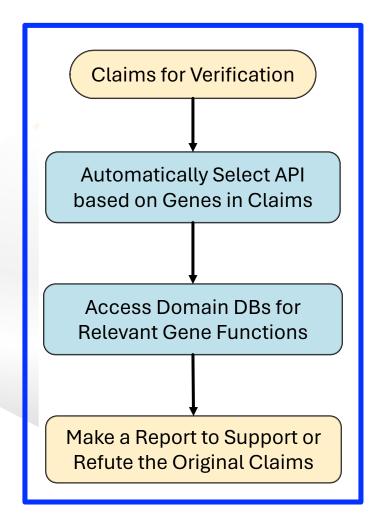




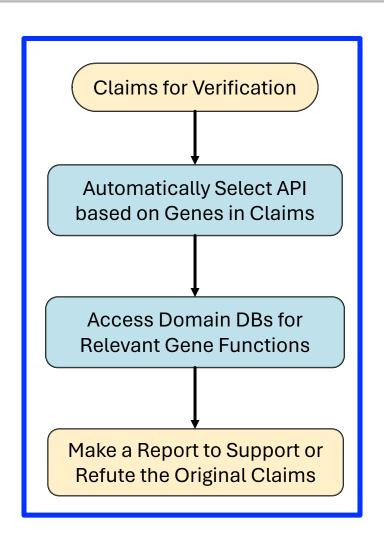
Gene-centric information in expertcurated biological databases

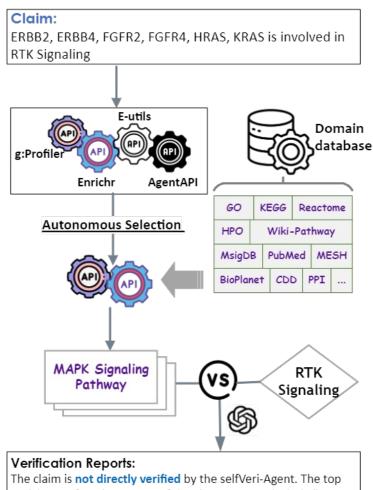
GeneAgent: overall workflow





Example of self-Verification

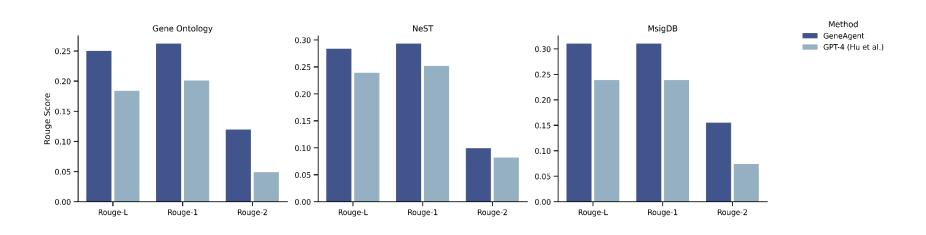




The claim is **not directly verified** by the selfVeri-Agent. The top enrichment function names of the given gene set include "**MAPK signaling pathway**", ..., while these functions are merely related to the name of "RTK Signaling". Therefore, based on the provided data, the claim **cannot be confirmed**.

Gene Agent vs. standard GPT-4

Dataset	#gene sets	#genes	Avg. genes
Gene Ontology	1,000	3 to 456	48.32
NeST	50	5 to 323	18.96
MsigDB	56	4 to 200	112.00
All	1,106	3 to 456	50.67



Human review of LLM-generated verification reports

 Self-verification report (partially) supports or refutes original claims

Claim:

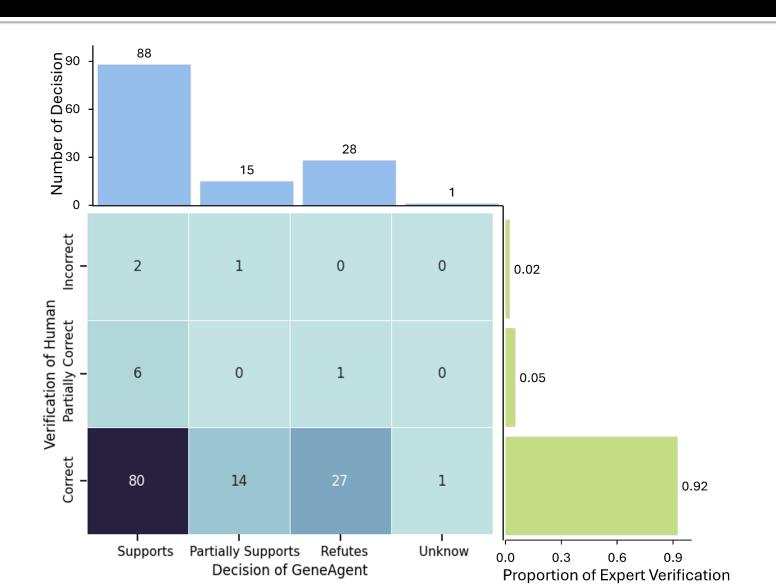
ERBB2, ERBB4, FGFR2, FGFR4, HRAS, KRAS is involved in RTK Signaling

Verification Reports:

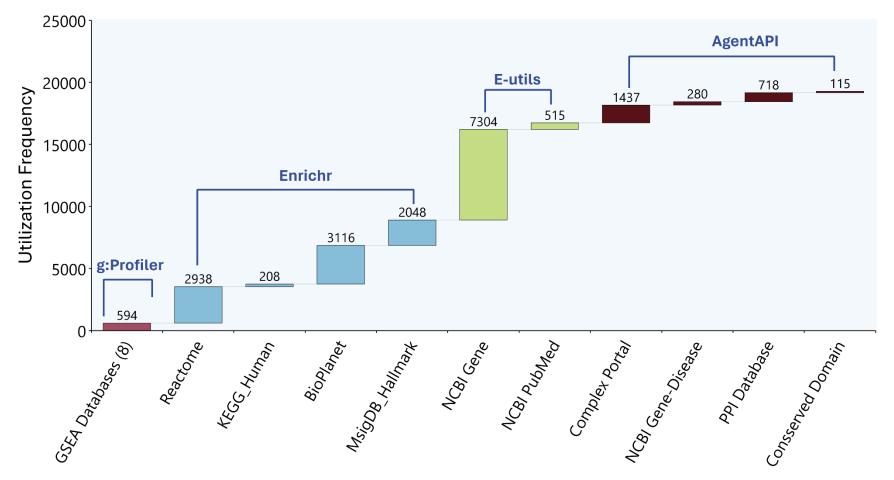
The claim is **not directly verified** by the selfVeri-Agent. The top enrichment function names of the given gene set include "**MAPK signaling pathway**", ..., while these functions are merely related to the name of "RTK Signaling". Therefore, based on the provided data, the claim **cannot be confirmed**.

- 132 manually reviewed
 - Double annotated
 - High inter-rater agreement

Self-verification is highly accurate



Utilization of different KBs



Pilot study with novel gene sets

- To assess its potential utility in real-world applications
- Worked with domain experts from NCI
- Novel gene sets from mouse
 B2905 melanoma cell line

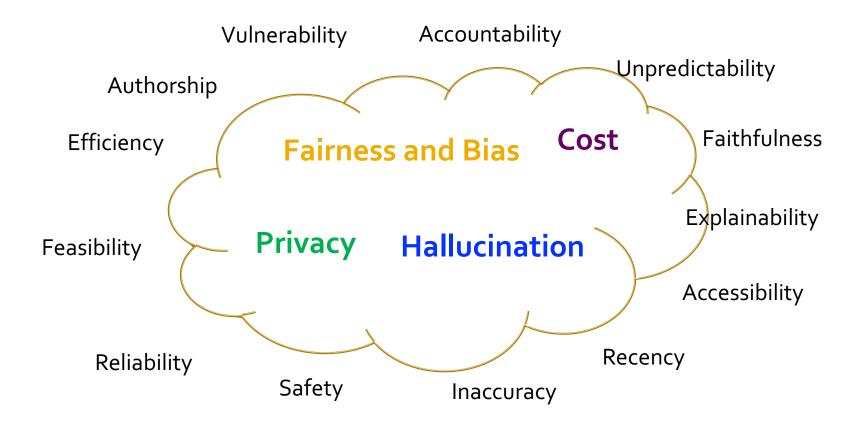
Chi-Ping Day PhD
Lab of Cancer Biology and Genetics,
Cancer Data Science Lab, NCI

Christina Ross, Ph.D. NCI Lab of Cancer Biology and Genetics

Evaluation results by 2 domain experts

	Generated by GPT-4	Generated by GeneAgent	Gene Coverage	Better Output Annotated by Genomic Experts									
ID				Relevance		Readability		Consistency		Comprehensive		Final Decision	
				GPT-4	GeneAgent	GPT-4	GeneAgent	GPT-4	GeneAgen t	GPT-4	GeneAgent	GPT-4	GeneAgent
mmu05171 (HA-R)	Ribosomal Protein Synthesis	Cytosolic Ribosome and Protein Synthesis	33/36		0	0	0	0	0	0	0		~
mmu03010 (HA-R)	Ribosomal Protein Synthesis and Assembly	Cytosolic Ribosome	34/35		0	0	0	0	0	0	0		~
mmu03010 (HA-S)	Ribosomal Protein Synthesis	Cytosolic Ribosome	13/49									×	×
mmu05171 (HA-S)	Ribosomal Protein Synthesis	Cytosolic Ribosome Assembly and Protein Synthesis	47/47		0	0	0		0		0		~
mmu04015 (HA-S)	MAPK/ERK Pathway Regulation	Rap1 Signaling Pathway	27/27		0	0	0	0	0	0	0		~
mmu05100 (HA-S)	Caveolae- Mediated Endocytosis and Actin Remodeling	Bacterial Invasion of Epithelial Cells	19/19	0		0	0	0		0		>	
mmu05022 (LA-S)	Oxidative Phosphorylation and Neurodegenerati on	on and	23/24		0	0		0	0		0		~

Limitations & Risks of LLMs in Medicine



Tian et al. Opportunities and Challenges for ChatGPT and Large Language Models in Biomedicine and Health. *Briefings in Bioinformatics*, 2024.

Acknowledgments

Lu lab at NLM/NCBI: Don Comeau, Rezarta Dogan, Amr Elsawy, Won Kim, Qiao Jin, Robert Leaman, Po-Ting Lai, Ashley Shin, Shubo Tian, Zhizheng Wang, Chih-Hsuan Wei, John Wilbur, Natalie Xie, Yifan Yang, Lana Yeganova, Qingqing Zhu

NEI: Emily Chew, Michael Chiang, Tiarnan Keenan

CC: Ron Summers, Le Lu, Xiaosong Wang, Ke Yan, etc.

NCATS: Tyler Beck, Christine Colvis

NCI: Harris Floudas, James Gulley

PubMed: Grisha Starchenko, Jessica Chan, Kathi Canese, etc.

dbSNP: Lon Phan, Juliana Feltz, Rama Maiti, Tim Hefferon

ClinVar: Melissa Landrum

BioCreative: Cecilia Arighi, Graciela Gonzalez-Hernandez, Martin Krallinger, Lynette Hirschman

UniProt: Alex Bateman, Alan Bridge, Livia Famiglietti, Michele Magrane, Sylvain Poux, Cathy Wu

GWAS Catalog: Jackie MacArthur, Fiona Cunningham, Helen Parkinson

