

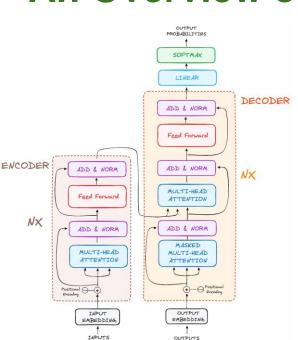
How to Use Open-source LLMs with **Python**

Presenters: Robert Tang

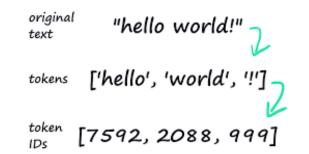
NIH National Library of Medicine National Center for Biotechnology Information

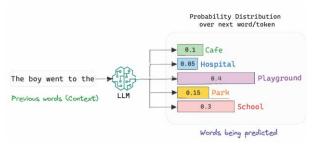
Open-source LLMs

Presenters: Robert Tang, Tom Qiu



NIH National Library of Medicine National Center for Biotechnology Information


Learning Objectives of the session


- Why open source models
- More specifics on 3 such models
 - Llama3
 - Mistral
 - Deepseek
- Performance comparison
- Methods to improve accuracy of such LLMs for certain tasks (e.g. prompting techniques)
- Walkthrough of Llama 3 in Python with Google Colab

An Overview of Transformers

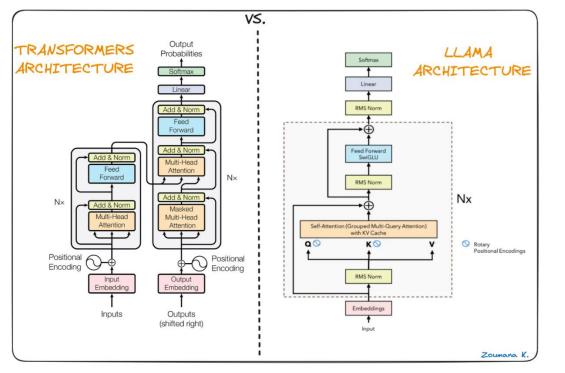
- 1. Encoding
- 2. Attention
- 3. Multilayer perceptron
- 4. Repeat
- 5. Decoding
- 6. Probability distribution

Why Are There So Many Tokenization Methods For Transformers? How Transformers Work: A Detailed Exploration of Transformer Architecture How do Language models(LLM) work ?

Open-Source LLMs

- 1. Transparency
 - a. Make powerful AI tools available to a broader audience
 - b. Ethical development process
- 2. Collaboration
 - a. AI community can collectively contribute
- 3. Customization
 - a. Allow developers to customize and fine-tune models to suit specific needs and applications
- 4. Cost
 - a. Proprietary models like GPT-4 often come with significant costs

Llama3

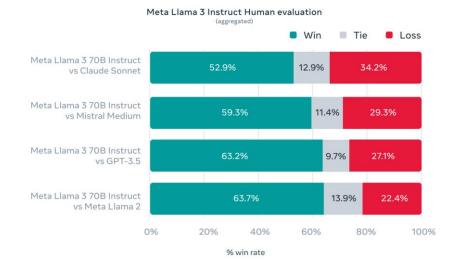

🔿 Meta Al	
New conversation	
🖉 Imagine	You give me a small code snippet that references pinec
History	
 Messenger 	 Meta AI Sure, here's a simple Python code snippet that refe
Pinecones code snippet	Sure, here's a simple Python code shippet that refe
⑦ Code exercise	Python
Debug script	Fytion
Clean code	class Pinecone:
Code navigation	def init (self, size, type of pi
Ø Work playlist	self.size = size
See more	<pre>self.type_of_pine = type_of_pine</pre>
	<pre>def display_info(self):</pre>
	<pre>print(f"This pinecone is {self.</pre>
	<pre>a {self.type_of_pine} tree.")</pre>
	<pre>pinecone = Pinecone(5, "Scots Pine")</pre>
	pinecone.display_info()

"With Llama 3, we set out to build the best open models that are on par with the best proprietary models available today. We wanted to address developer feedback to increase the overall helpfulness of Llama 3 and are doing so while continuing to play a leading role on responsible use and deployment of LLMs."

Introduced April 2024.

"Our new 8B and 70B parameter Llama 3 models ... establish a new state-of-the-art for LLM models at those scales ... [and] are the best models existing today at the 8B and 70B parameter scale."

Llama3

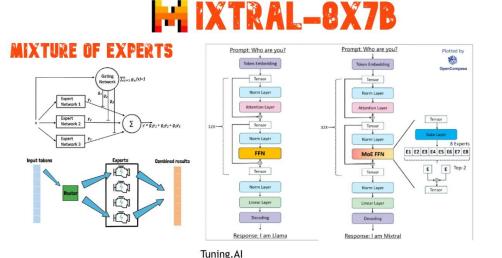


Significant improvement over Llama 2

- Improvement on benchmarks
- Larger token vocabulary
- Increased context length (8k tokens)

LLaMA explained!

Llama3



Meta Llama 3 Instruct model performance

	Meta Llama 3 8B	Gemma 7B - It Measured	Mistral 7B Instruct Measured		Meta Llama 3 70B	Gemini Pro 1.5 Published	Claude 3 Sonnet Published
MMLU 5-shot	68.4	53.3	58.4	MMLU 5-shot	82.0	81.9	79.0
GPQA 0-shot	34.2	21.4	26.3	GPQA 0-shot	39.5	41.5 _{Cot}	38.5 _{Cot}
HumanEval O-shot	62.2	30.5	36.6	HumanEval 0-shot	81.7	71.9	73.0
GSM-8K 8-shot, CoT	79.6	30.6	39.9	GSM-8K 8-shot, CoT	93.0	91.7 11-shot	92.3 0-shot
MATH 4-shot, CoT	30.0	12.2	11.0	MATH 4-shot, CoT	50.4	58.5 Minerva prompt	40.5

https://ai.meta.com/blog/meta-llama-3/

Mistral Al

Mistral AI is a French company selling artificial intelligence (AI) products. It was founded in April 2023 by previous employees of Meta Platforms and Google DeepMind.

"Our mission is to make frontier AI ubiquitous, and to provide tailor-made AI to all the builders. This requires fierce independence, strong commitment to open, portable and customisable solutions, and an extreme focus on shipping the most advanced technology in limited time."

Understanding Mixtral-8x7B: A Dive into Mixture of Experts (MoE) Architecture

Mistral Al

Open source models

		Input	Output
open-mistral-7b	A 7B transformer model, fast-deployed and easily customisable.	\$0.25 /1M tokens	\$0.25 /1M tokens
open-mixtral-8x7b	A 7B sparse Mixture-of-Experts (SMoE). Uses 12.9B active parameters out of 45B total.	\$0.7 /1M tokens	\$0.7 /1M tokens
open-mixtral-8x22b	Mixtral 8x22B is currently the most performant open model. A 22B sparse Mixture-of-Experts (SMoE). Uses only 39B active parameters out of 141B.	\$2 /1M tokens	\$6 /1M tokens

Mixture-of-Experts architecture, extending context length up to 65K tokens for its open-mixtral-8x22b model (larger than many models, including GPT-4's 32K tokens)

Mistral Al

Automate large scale text generation & processing

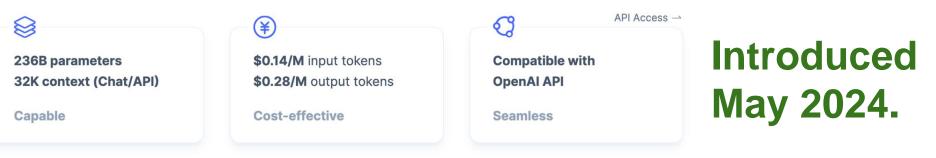
Use our Mistral models to process, summarize, classify or translate any kind of text. Summarize a long report, classify customer reviews, translate emails into other languages, generate marketing campaigns - the possibilities are endless!

Build an internal assistant with RAG and function calling

Give your employees easy access to internal company knowledge by building retrieval-augmented (RAG) applications. You can use our state-of-the-art embedding model for that, as well as the function calling capacities of our models.

Empower your developers with a coding assistant

Leverage your developers with a custom-built coding co-pilot and accelerate your coding speed! Mistral models have proven to be particularly strong in coding, making them a great asset to accelerate application development or even IT legacy modernization.



Tailor your applications to your customer base

Our multilingual models can be tuned to follow a certain editorial line and used to generate content as you see fir for your customers.

DeepSeek

Why DeepSeek-V2?

Emphasizes efficiency and cost, while achieving similar, if not better performance than many other state-of-the-art models, especially in Chinese, math, coding, and reasoning

DeepSeek

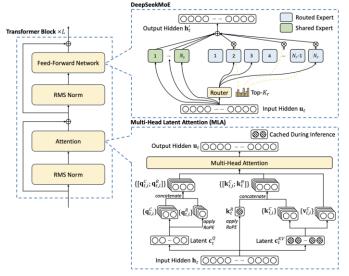


Figure 2 | Illustration of the architecture of DeepSeek-V2. MLA ensures efficient inference by significantly reducing the KV cache for generation, and DeepSeekMoE enables training strong models at an economical cost through the sparse architecture.

SOTA-model is DeepSeek-V2 with 236B parameters, which features innovative architectures like Multi-head I atent Attention and DeepSeekMoE for optimized inference. Also features a 128K context window size

DeepSeek

Chinese Performance vs. API Price

Elites in AlignBench, DeepSeek-V2's performance is in the top tier globally with unbeatable API pricing.

						Open source	Chinese General AlignBench	English General MT-Bench	Knowledge MMLU	Arithmetic GSM8K	Math MATH	Reasoning BBH	Coding HumanEval
Align	Bench				DeepSeek-V2	Yes	7.91	8.97	77.8	92.2	53.9	79.7	81.1
					GPT-4-Turbo-1106	-	8.01	9.32	84.6	93.0	64.1	-	82.2
8.0	O DeepSeek-V2		O GPT-4-Turbo O ERNIE-4.0		GPT-4-0613	-	7.53	8.96	86.4	92.0	52.9	83.1	84.1
	o boopoon vi		O GLM-4		GPT-3.5	-	6.08	8.21	70.0	57.1	34.1	66.6	48.1
					Gemini1.5 Pro	-	7.33	8.93	81.9	91.7	58.5	84.0	71.9
			O Claude3 Opus		Claude3 Opus	-	7.62	9.00	86.8	95.0	61.0	86.8	84.9
		0.14	ama3-70Bo MiniMax-abab6		Claude3 Sonnet	-	6.70	8.47	79.0	92.3	40.5	82.9	73.0
					Claude3 Halku	-	6.42	8.39	75.2	88.9	40.9	73.7	75.9
		 Moonshot-v1 			abab-6.5	-	7.97	8.82	79.5	91.7	51.4	82.0	78.0
		O Qwen1.5 72B			abab-6.5s	-	7.34	8.69	74.6	87.3	42.0	76.8	68.3
7.0		 Skylark2-Pro 			ERNIE-4.0	-	7.89	7.69	-	91.3	52.2	-	72.0
		O Baichuan2-Turbo			GLM-4	-	7.88	8.60	81.5	87.6	47.9	82.3	72.0
		O Qwen-turbo	 Claude3 Sonnet 		Moonshot-v1	-	7.22	8.59	-	89.5	44.2	-	82.9
					Baichuan 3	-	-	8.70	81.7	88.2	49.2	84.5	70.1
	0.0	Claude3 Haiku O Mixtral-8×22B			Qwen1.5 72B	Yes	7.19	8.61	76.2	81.9	40.6	65.9	68.9
	00				LLaMA 3 70B	Yes	7.42	8.95	80.3	93.2	48.5	80.1	76.2
	0 G	LM-3-Turbo			Mixtral 8×22B	Yes	6.49	8.66	77.8	87.9	49.8	78.4	75.0
6.0													
	\$ 0.1	\$1	\$ 10	\$ 100									

https://www.deepseek.com/

Performance

		-					1							
				provider	1M input tokens	6		1M ou	itput tokens	0				
		GPT 4	Turbo	openai			\$10		\$30	150px =	\$0,00255			
		GPT 4	Omni	openai			\$5		\$15	150px = \$	\$0,001275			
		Gemi	ni 1.5 Pro	google		\$3.50	0/-128K	\$	\$10.5/-128K					
		Ocim	1111.5110	BOORIC		\$7	7/+128K		\$21/+128K					
		Gemi	ni 1.5 Flash	google		\$0.35	5/-128K	\$	0.53/-128K					
		Ocim	111 1.5 1 (0.51)	BOOBIC		\$0.70	/+128K	\$	1.05/+128K					
		Claud	le 3 Opus	anthropic			\$15		<u>\$75</u>					
		Claud	le 3 Soonet	anthropic			\$3		\$15					
		Claud	le 3 Haiku	bedrock			\$0.25		\$1.25					
		Cohe	re R+	bedrock			\$3		\$15					
		Llama	a 3 70B	bedrock			\$2.5		\$3.05					
		Mistra	alLarge	mistral			\$4		\$12					
model	HellaSwag		MMLU	ARC-C	DROP	WinoGrande	MATH	B	BIG-Bench	HumanEval	Natural2Cod	e WMT23	GSM8K	GPQA
GPT4		95.3	86.4	96.3	80.9	87.5	5	2.9	83.1	67.0	73.	9 73.8	92.0	35.7
GPT-4 Turbo		96	88.4	x	86	x	7	2.6	83.9	73.1	7	5 x	x	48
GPT 4 Omni		х	88.7	x	83.4	x	7	6.6	x	90.2		x x	x	53.6
Claude 3 Opus		95.4	86.8	96.4	83.1	88.5	6	60.1	86.8	84.9		x x	95	50.4
Gemini Pro 1.5		92.5	81.9	x	78.9	x	5	8.5	84	71.9	77.	7 75.2	91.7	41.5
Gemini 1.5 Flash		х	78.9	x	x	x	5	4.9	85.5	x	77.	2 x	x	39.5
Cohere R+		91.2	88.2	x	x	84.3		x	x	71.4		x x	x	х
Mistral Large		89.2	81.2	94.2	x	87.5		45	x	45.1		x x	81	x
Mistral 8x22B		88.5	77.7	91.3	x	84.7	4	1.8	х	45.1		x x	78.6	х
Llama 70B		85.6	82	93	79.7	83.1		30	81.3	81.7		x x	93	39.5
Llama 400B		х	86.1	x	83.5	x	5	7.8	x	84.1		x x	x	48

https://medium.com/@daniellefranca96/battle-of-the-top-llama-3-claude-3-gpt4-omni-gemini-1-5-pro-light-and-more-3ff560cf6b58

Prompting to improve quality of LLMs generated responses

- 1. Clear and specific instructions
 - i. Vague: "Tell me about Python."
 - ii. Specific: "Explain the main differences between Python 2 and Python 3."
- 2. Contextual information
 - i. "How does backpropagation work?" vs. "In the context of neural networks, how does backpropagation work?"
- 3. Role play
 - i. "You are a data scientist explaining neural networks to a beginner. How would you describe it?"
- 4. Iterative refinement
 - "What are the advantages of renewable energy?" -> "What are the economic advantages of renewable energy sources like solar and wind?"

We will reconvene in 15 mins. Meanwhile, we are available for Q/As.

Next in line: Hands On Tutorial

Hands On Tutorial with Open Source LLMs

Presenters: Robert Tang

NIH National Library of Medicine National Center for Biotechnology Information

Link to a python Jupyter Notebook

https://colab.research.google.com/drive/1xxslbGLf7BCOgXgjyTuVEDeire1zzNsB# scrollTo=5KONMiTvPzRY

Code Generation in Bioinformatics

Presenters: Robert Tang

NIH National Library of Medicine National Center for Biotechnology Information

Code LLMs

Presenters: Robert Tang

Learning Objectives of the session

- Brief overview of how code LLMs differ from non-code LLMs
- Introduction to code LLM development
 - Pretraining, fine-tuning, evaluation of code LLMs
 - Prompting and instruction tuning
- Brief overview of how to overcome limitations of code LLMs

Code LLMs

Code Completion

```
#write a quick sort algorithm in Python.
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    less_than_pivot = []
    greater_than_pivot = []
    for i in range(1, len(arr)):
        if arr[i] < pivot:</pre>
```

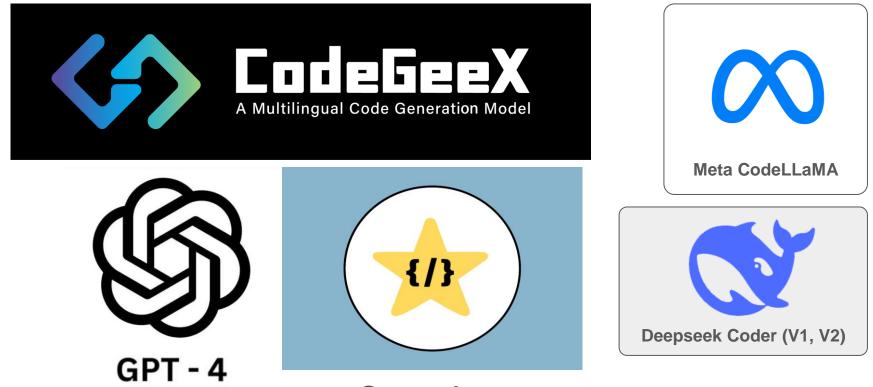
```
less_than_pivot.append(arr[i])
        else:
```

```
greater_than_pivot.append(arr[i])
    return quick_sort(less_than_pivot) +
[pivot] + quick_sort(greater_than_pivot)
```

```
# Test the function
print(quick_sort([7, 2, 3, 1, 4]))
```

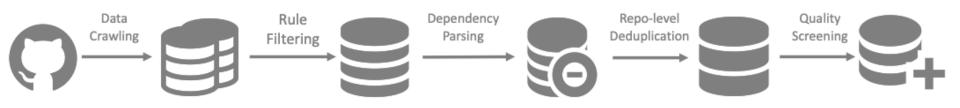
```
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
    <|fim_hole|>
        left.append(arr[i])
        else:
```

```
right.append(arr[i])
    return quick_sort(left) +
[pivot] + quick_sort(right)
```


Fill-In-The-Blank

```
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
    for i in range(1,
    len(arr)):
        if arr[i] < pivot:
            left.append(arr[i])
        else:
```

```
right.append(arr[i])
    return quick_sort(left) +
[pivot] + quick_sort(right)
```


23

Notable Code LLM models

Starcoder

Development Process

Pretraining

- Natural language queries
- Prioritize language understanding
- Usually 500B-2T tokens

GitHub Code Scraping

- Scrape GitHub for millions of repositories
- Use novel code filtering, highlighting, and analysis techniques
- Perform repository-level dependency analysis

Fine-tuning

- Use a prompt to provide more structured outputs (next slide)
- Model learns to generate more structured code based on repositories

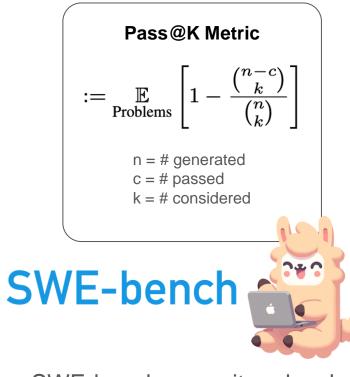
Prompting/Instruction Tuning

Complete the following code
sample, following the user instruction
and the given context.

Context
{context}

User Input
{user_input}

Response
<model output here>


Prompt + Dataset

Instruction Tuning

- Model learns to generate more structured outputs
- Used by some models, extremely useful for agent-related tasks

Evaluation

Model	Size	HumanEval Python Multilingual		MBPP	DS-1000
	Pre-Tr	ained Mo	dels		
Codex-001	-	33.5%	26.1%	45.9%	20.2%
Codex-002	-	-	-	-	39.2%
StarCoder	16B	36.0%	28.7%	46.8%	27.2%
CodeGeeX2	6B	36.0%	24.5%	42.4%	22.9%
CodeLlama	7B	31.7%	29.2%	41.6%	22.1%
CodeLlama	13B	36.0%	35.4%	48.4%	26.8%
CodeLlama	34B	48.2%	41.0%	55.2%	34.3%
DeepSeek-Coder-Base	1.3B	34.8%	28.3%	46.2%	16.2%
DeepSeek-Coder-MQA-Base	5.7B	48.7%	41.3%	57.2%	27.7%
DeepSeek-Coder-Base	6.7B	49.4%	44.7%	60.6%	30.5%
DeepSeek-Coder-Base	33B	56.1%	50.3%	66.0%	40.2%
Iı	nstructio	on-Tuned	Models		
GPT-3.5-Turbo	-	76.2%	64.9 %	70.8%	-
GPT-4	-	84.1%	76.5%	80.0%	-
DeepSeek-Coder-Instruct	6.7B	78.6%	66.1%	65.4%	-
DeepSeek-Coder-Instruct	33B	79.3%	69.2%	70.0%	-

SWE-bench: repository-level benchmark

Source: <u>https://github.com/deepseek-ai/DeepSeek-Coder</u>

Current Research

Agents

Rapid API

RapidAPI

OpenDevin

In-File Repo-level RepoCoder Completion RAG Unfinished Unfinished Repo Repo Unfinished Code **Files** Code Files Code Retrieval Retrieval Generation Generation Generation Predicted Predicted Completion Predicted Completion Completion RepoCoder ToolLLM https://arxiv.org/pdf/2303.12570 https://github.com/OpenBMB/ToolBench **Data Construction & Train & Inference** G 🌒 👧 💽 ··· API Instruction Solution Path **API Retriever Retrieved** APIs Collection Generation Annotation Instruction Instructions & / relevant APIs

ToolBench

SFT

LLaMA

ToolLLaMA

API Retriever

Repository Level Code Completion

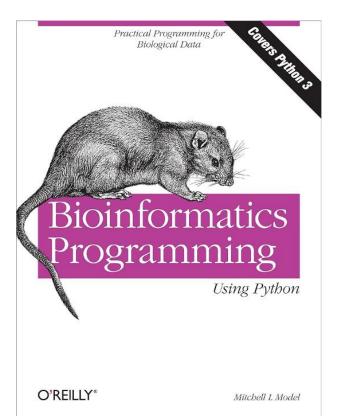
Final Answer

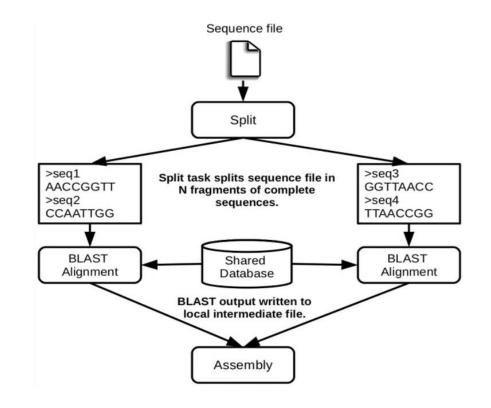
ToolEval

XN

Q Rapid API

BioCoder: A Benchmark for Bioinformatics Code Generation with Large Language Models


Presenters: Robert Tang



NIH National Library of Medicine National Center for Biotechnology Information

How about bioinformatics code generation?

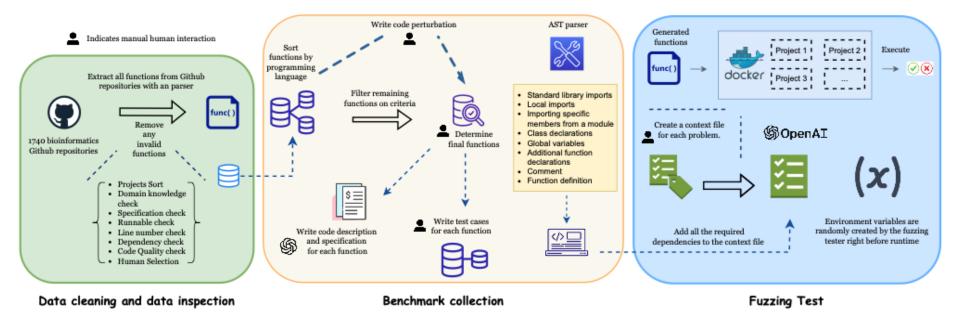
Building a reliable benchmark

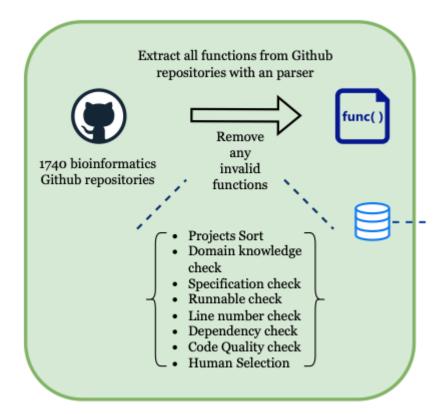
Code Parsing Tools

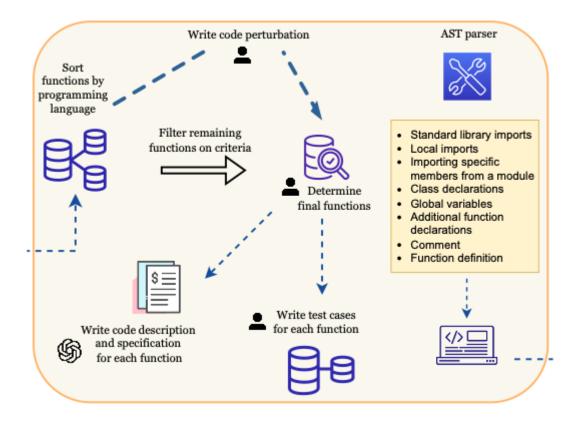
Tools for parsing large-scale projects and repos, including AST (Abstract Syntax Tree) parsers for code and utilities to extract code attributes.

Processed Data

The Pragmatic dataset encompasses functional code for bioinformatics repos, comprehensive specifications, and a scalable interface. It has undergone rigorous filtering, extensive data cleaning, and preprocessing to prevent models from memorizing.


Testing and Docker


Testing incorporates a Docker environment, an abundance of required dependencies, and a multitude of fuzz test cases. This robust setup not only facilitates testing in realistic project scenarios, but also promotes exceptional scalability and transferability.


Models

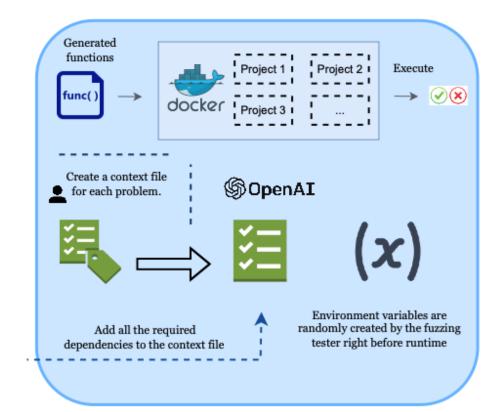

Code generation with large language models such as SantaCoder, StarCoder, CodeGen, in conjunction with APIs based on OpenAl.

Figure 1: Overview of our contribution in BIOCODER.

Here are the imports: from collections import defaultdict import re import numpy as np	Area where imports for function is defined
Here are the global variables: trans_dict = defaultdict(lambda : 5, A=0, C=1, G=2, T=3) trans_dict['-'] = 4	Area where global
<pre>Here are the class declarations: class Sequence(object): attributes: self.label,self.sequence,self.length,self.unaligned_length,self.frequency,self.np_seque nce</pre>	variabls for function is defined (Python only)
<pre>methods: definit(self, label, sequence): summary: Initializes a class instance with the specified label and sequence information. param: label (str) - the label of the sequence. param: sequence (str) - the nucleotide sequence.</pre>	Area where external classes for function is defined
return: None - the function does not return any value. defeq(self, other): Parameters: - self (object) - the first object to be compared - other (object) - the second object to be compared Return: - (bool) - returns True if the objects are equal and False if they are not	Area where summary for function is defined
equal.	
summary: Returns a string with the sequence in fasta format param: None return: str - The FASTA representation of the sequence The function is located in the class Sequence	Area where function signature is defined
<pre>def to_fasta(self):</pre>	

Rank	Model	Details	Pass@1	Pass@5	Pass@10	Pass@20
1	gpt-4	Completion	38.439	48.491	50.619	52.229
Mar 14, 2023	Azure OpenAl	t=0.7, top-p=0.95				
		len = 8192				
2	gpt-3.5-turbo	Completion	24.682	33.997	37.132	40.127
Mar 01, 2023	Azure OpenAl	t=0.7, top-p=0.95				
		len = 8192				
3	Starcoder	Completion	4.682	15.225	21.200	27.166
May 09, 2023	Bigcode	t=0.7, top-p=0.95				
	Li et al., '23	len = 8192				
4	SantaCoder	Completion	2.965	9.848	14.227	18.181
Dec 22, 2022	Bigcode	t=0.7, top-p=0.95				
	Allal et al., '22	len = 2048				
5	InCoder-6B	Completion	1.688	5.320	8.332	12.006
Nov 08, 2022	Facebook AI	t=0.7, top-p=0.95				
	Fried et al., '22	len = 2048				
6	CodeGen2-7B	Completion	0.860	2.494	3.962	6.242
May 03, 2023	Salesforce Research	t=0.7, top-p=0.95				
	Nijkamp et al., '23	len = 2048				
7	CodeGen-6B	Completion	0.637	0.637	0.637	0.637
Nov 08, 2022	Salesforce Research	t=0.7, top-p=0.95				
	Nijkamp et al., '22	len = 2048				
8	InstructCodeT5+ 16B	Completion	0	0	0	0
May 15, 2023	Salesforce Research	t=0.7, top-p=0.95				
	Wang et al., '23	len = 2048				

Hands On Tutorial with BioCoder

Presenters: Robert Tang, Tom Qiu

NIH National Library of Medicine National Center for Biotechnology Information

Hands on Tutorial

https://colab.research.google.com/drive/18EiOJFG7zNmkSoDj7-wiCXMpVq9W1PX?usp=sharing