
How to Use Open-source LLMs with

Python

Presenters: Robert Tang

1

Open-source LLMs

Presenters: Robert Tang, Tom Qiu

2

Learning Objectives of the session

● Why open source models

● More specifics on 3 such models

○ Llama3

○ Mistral

○ Deepseek

● Performance comparison

● Methods to improve accuracy of such LLMs for certain tasks (e.g. prompting

techniques)

● Walkthrough of Llama 3 in Python with Google Colab

3

An Overview of Transformers

4

1. Encoding

2. Attention

3. Multilayer perceptron

4. Repeat

5. Decoding

6. Probability distribution

Why Are There So Many Tokenization Methods For Transformers?

How Transformers Work: A Detailed Exploration of Transformer Architecture

How do Language models(LLM) work ?

https://www.google.com/url?q=https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8?gi%3D72d49a617205&sa=D&source=editors&ust=1718208648476424&usg=AOvVaw3V0J4bJoaqScJ3Hxc71WmS
https://www.datacamp.com/tutorial/how-transformers-work
https://www.linkedin.com/pulse/how-do-language-modelsllm-work-we-call-chatgpt-mishra-fdqsc/

Open-Source LLMs

1. Transparency

a. Make powerful AI tools available to a broader audience

b. Ethical development process

2. Collaboration

a. AI community can collectively contribute

3. Customization

a. Allow developers to customize and fine-tune models to suit specific

needs and applications

4. Cost

a. Proprietary models like GPT-4 often come with significant costs

5

Llama3

6

“With Llama 3, we set out to build the best

open models that are on par with the best

proprietary models available today. We

wanted to address developer feedback to

increase the overall helpfulness of Llama 3

and are doing so while continuing to play a

leading role on responsible use and

deployment of LLMs.”

“Our new 8B and 70B parameter Llama 3

models … establish a new state-of-the-art for

LLM models at those scales … [and] are the

best models existing today at the 8B and 70B

parameter scale.”

Introduced April 2024.

https://llama.meta.com/llama3/

https://llama.meta.com/llama3/

Llama3

Significant improvement

over Llama 2

● Improvement on

benchmarks

● Larger token

vocabulary

● Increased context

length (8k tokens)

7

LLaMA explained!

https://medium.com/@pranjalkhadka/llama-explained-a70e71e706e9

Llama3

8

https://ai.meta.com/blog/meta-llama-3/

https://ai.meta.com/blog/meta-llama-3/

Mistral AI

9

“Our mission is to make frontier AI ubiquitous, and to provide tailor-made AI to all the

builders. This requires fierce independence, strong commitment to open, portable and

customisable solutions, and an extreme focus on shipping the most advanced technology in

limited time.”

Mistral AI is a French

company selling artificial

intelligence (AI) products. It

was founded in April 2023

by previous employees of

Meta Platforms and Google

DeepMind.

Understanding Mixtral-8x7B: A Dive into Mixture of Experts (MoE) Architecture

https://www.linkedin.com/pulse/understanding-mixtral-8x7b-dive-mixture-experts-moe-ayoub-kirouane-k7d1e

Mistral AI

Mixture-of-Experts architecture, extending context length up to 65K
tokens for its open-mixtral-8x22b model (larger than many models,
including GPT-4’s 32K tokens)

10

https://mistral.ai/technology/

https://mistral.ai/technology/

Mistral AI

11

https://mistral.ai/business/#use-cases

https://mistral.ai/business/#use-cases

DeepSeek

12

Emphasizes efficiency and cost, while achieving similar, if not

better performance than many other state-of-the-art models,

especially in Chinese, math, coding, and reasoning

Introduced

May 2024.

https://www.deepseek.com/

https://www.deepseek.com/

DeepSeek

SOTA-model is DeepSeek-

V2 with 236B parameters,

which features innovative

architectures like Multi-head

Latent Attention and

DeepSeekMoE for optimized

inference. Also features a

128K context window size

13
Liu et al., DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model (2024)

DeepSeek

14
https://www.deepseek.com/

https://www.deepseek.com/

Performance

15
https://medium.com/@daniellefranca96/battle-of-the-top-llama-3-claude-3-gpt4-omni-gemini-1-5-pro-light-and-more-3ff560cf6b58

https://medium.com/@daniellefranca96/battle-of-the-top-llama-3-claude-3-gpt4-omni-gemini-1-5-pro-light-and-more-3ff560cf6b58

Prompting to improve quality of LLMs generated responses

1. Clear and specific instructions
i. Vague: "Tell me about Python."

ii. Specific: "Explain the main differences between Python 2 and Python 3."

2. Contextual information
i. “How does backpropagation work?” vs. “In the context of neural networks, how does

backpropagation work?"

3. Role play
i. "You are a data scientist explaining neural networks to a beginner. How would you

describe it?"

4. Iterative refinement
i. "What are the advantages of renewable energy?" -> "What are the economic

advantages of renewable energy sources like solar and wind?"

16

Break!

We will reconvene in 15 mins. Meanwhile, we are available for Q/As.

Next in line: Hands On Tutorial

17

Hands On Tutorial with Open Source

LLMs

Presenters: Robert Tang

18

Link to a python Jupyter Notebook

https://colab.research.google.com/drive/1xxsIbGLf7BCOgXgjyTuVEDeire1zzNsB#

scrollTo=5KONMiTvPzRY

19

https://colab.research.google.com/drive/1xxsIbGLf7BCOgXgjyTuVEDeire1zzNsB#scrollTo=5KONMiTvPzRY
https://colab.research.google.com/drive/1xxsIbGLf7BCOgXgjyTuVEDeire1zzNsB#scrollTo=5KONMiTvPzRY

Code Generation in Bioinformatics

Presenters: Robert Tang

20

Code LLMs

Presenters: Robert Tang

21

Learning Objectives of the session

● Brief overview of how code LLMs differ from non-code LLMs

● Introduction to code LLM development
○ Pretraining, fine-tuning, evaluation of code LLMs

○ Prompting and instruction tuning

● Brief overview of how to overcome limitations of code LLMs

22

Code LLMs

23

#write a quick sort algorithm in Python.

def quick_sort(arr):
if len(arr) <= 1:

return arr
pivot = arr[0]
less_than_pivot = []
greater_than_pivot = []
for i in range(1, len(arr)):

if arr[i] < pivot:

less_than_pivot.append(arr[i])
else:

greater_than_pivot.append(arr[i])
return quick_sort(less_than_pivot) +

[pivot] + quick_sort(greater_than_pivot)

Test the function
print(quick_sort([7, 2, 3, 1, 4]))

Code Completion Fill-In-The-Blank

def quick_sort(arr):
if len(arr) <= 1:

return arr
pivot = arr[0]
left = []
right = []

<｜fim▁hole｜>
left.append(arr[i])

else:

right.append(arr[i])
return quick_sort(left) +

[pivot] + quick_sort(right)

def quick_sort(arr):
if len(arr) <= 1:

return arr
pivot = arr[0]
left = []
right = []
for i in range(1,

len(arr)):
if arr[i] < pivot:

left.append(arr[i])
else:

right.append(arr[i])
return quick_sort(left) +

[pivot] + quick_sort(right)

Notable Code LLM models

24

Deepseek Coder (V1, V2)

Meta CodeLLaMA

Starcoder

Development Process

25

Pretraining
● Natural language

queries

● Prioritize language

understanding

● Usually 500B-2T

tokens

GitHub Code

Scraping
● Scrape GitHub for

millions of repositories

● Use novel code filtering,

highlighting, and analysis

techniques

● Perform repository-level

dependency analysis

Fine-tuning
● Use a prompt to provide

more structured outputs

(next slide)

● Model learns to generate

more structured code

based on repositories

Prompting/Instruction Tuning

26

Complete the following code
sample, following the user instruction
and the given context.

Context
{context}

User Input
{user_input}

Response
<model output here>

Complete the following code
sample, following the user instruction
and the given context.

Context
{context}

User Input
{user_input}

Response
<model output here>

Complete the following code
sample, following the user instruction
and the given context.

Context
{context}

User Input
{user_input}

Response
<model output here>

Prompt + Dataset

Instruction Tuning
● Model learns to

generate more

structured outputs

● Used by some models,

extremely useful for

agent-related tasks

Evaluation

27

Pass@K Metric

n = # generated

c = # passed

k = # considered

SWE-bench: repository-level

benchmark

Source: https://github.com/deepseek-ai/DeepSeek-Coder

https://github.com/deepseek-ai/DeepSeek-Coder

Current Research

28

Repository Level Code Completion

RepoCoder
https://arxiv.org/pdf/2303.12570

Agents

OpenDevin

ToolLLM
https://github.com/OpenBMB/ToolBench

https://arxiv.org/pdf/2303.12570
https://github.com/OpenBMB/ToolBench

BioCoder: A Benchmark for

Bioinformatics Code Generation with

Large Language Models

Presenters: Robert Tang

29

How about bioinformatics code generation?

30

Building a reliable benchmark

31

Benchmark construction process

32

Benchmark construction process

33

Benchmark construction process

34

Benchmark construction process

35

36

37

Hands On Tutorial with BioCoder

Presenters: Robert Tang, Tom Qiu

38

Hands on Tutorial

https://colab.research.google.com/drive/18EiOJFG7zNmkSoDj7--

wiCXMpVq9W1PX?usp=sharing

39

https://colab.research.google.com/drive/18EiOJFG7zNmkSoDj7--wiCXMpVq9W1PX?usp=sharing
https://colab.research.google.com/drive/18EiOJFG7zNmkSoDj7--wiCXMpVq9W1PX?usp=sharing

	Slide 1: How to Use Open-source LLMs with Python
	Slide 2: Open-source LLMs
	Slide 3: Learning Objectives of the session
	Slide 4: An Overview of Transformers
	Slide 5: Open-Source LLMs
	Slide 6: Llama3
	Slide 7: Llama3
	Slide 8: Llama3
	Slide 9: Mistral AI
	Slide 10: Mistral AI
	Slide 11: Mistral AI
	Slide 12: DeepSeek
	Slide 13: DeepSeek
	Slide 14: DeepSeek
	Slide 15: Performance
	Slide 16: Prompting to improve quality of LLMs generated responses
	Slide 17: Break!
	Slide 18: Hands On Tutorial with Open Source LLMs
	Slide 19: Link to a python Jupyter Notebook
	Slide 20: Code Generation in Bioinformatics
	Slide 21: Code LLMs
	Slide 22: Learning Objectives of the session
	Slide 23: Code LLMs
	Slide 24: Notable Code LLM models
	Slide 25: Development Process
	Slide 26: Prompting/Instruction Tuning
	Slide 27: Evaluation
	Slide 28: Current Research
	Slide 29: BioCoder: A Benchmark for Bioinformatics Code Generation with Large Language Models
	Slide 30: How about bioinformatics code generation?
	Slide 31: Building a reliable benchmark
	Slide 32: Benchmark construction process
	Slide 33: Benchmark construction process
	Slide 34: Benchmark construction process
	Slide 35: Benchmark construction process
	Slide 36
	Slide 37
	Slide 38: Hands On Tutorial with BioCoder
	Slide 39: Hands on Tutorial

